Условия работы ферментов.  Биологические ферменты. Роль биологических молекул, входящих в состав организма

Ферменты (энзимы) - это специфические белки, играющие роль биологических катализаторов; вырабатываются клетками живых организмов.

Ферменты отличаются от обычных катализаторов своей большей специфичностью (см. ниже), а также способностью ускорять течение химических реакций в условиях нормальной жизнедеятельности организма.

Ферменты присутствуют во всех живых клетках - животных, растительных, бактериальных. Большинство ферментов находится в тканях в ничтожных концентрациях, однако известны случаи, когда ферментативной активностью обладает белок, составляющий значительную часть клеточной плазмы, например миозин в мышечной ткани. Молекулярный вес ферментов колеблется в широких пределах: от нескольких тысяч до нескольких миллионов, причем однотипные ферменты, но выделяемые из разных источников, могут иметь различный молекулярный вес, отличаться последовательностью аминокислотного состава.

Ферменты, обладающие одинаковым каталитическим действием, но отличающиеся по своим физико-химическим свойствам, называются изоферментами (изоэнзимами). Ферменты могут быть простыми или сложными белками. Последние, кроме белка (апофермента), имеют в своем составе и небелковый компонент - остаток органической молекулы или неорганический ион. Легко отделяемый от апофермента небелковый компонент называют коферментом. Прочно связанная с ферментом небелковая часть называется простетической группой. Многие простетические группы и коферменты являются производными витаминов, пигментов и др. Ферменты обладают строгой специфичностью по отношению к субстрату (т. е. избирательно взаимодействует с теми или иными химическими веществами и соединениями). Например, лактаза (находится в кишечном соке) расщепляет только дисахарид-лактозу и производные лактозы (лактобионовую кислоту, лактоуреиды и др.) с образованием смеси глюкозы и галактазы; мальтаза расщепляет мальтозу на две молекулы глюкозы, а амилаза действует только на крахмал, гликоген и другие .

В результате последовательного действия перечисленных, а также других ферментов превращаются в моносахариды и всасываются кишечной стенкой. Специфичность ферментов определяется тем, что они вступают во взаимодействие с определенной химической группировкой субстрата. Например, (см.) действует на белки, расщепляет связи, находящиеся внутри полипептидной цепи молекулы белка, при этом молекула белка расщепляется на полипептиды, которые затем под действием других ферментов - (см.), (см.) и пептидаз могут расщепляться до аминокислот. Специфичность ферментов играет, таким образом, важную биологическую роль; благодаря ей в организме достигается последовательность течения химических реакций. Неорганические ионы активируют ряд ферментов; некоторые ферменты (металлоферменты) вообще неактивны, если отсутствует тот или иной, специфичный для данного фермента ион. Участки ферментов, ответственные за локализацию и активацию субстрата в ферментативном процессе, называют активными центрами ферментов. В образовании активного центра участвуют специфические аминокислотные остатки белковой молекулы, сульфгидрильные группы и простетические группы, если они имеются. Так, в состав ферментов, носящих групповое название флавопротеидов, в качестве простетической группы входит флавиновое производное (обычно это флавинадениндинуклеотид - ФАД). Легко окисляясь и восстанавливаясь, флавиновые простетические группы выполняют функцию биологических переносчиков водорода, например при дегидрировании аминокислот с участием кислорода или при дегидрировании с участием цитохромов в митохондриях начальных компонентов дыхательной цепи (таких, как сукцинат,

Ферменты и витамины

Роль биологических молекул, входящих в состав организма.

Лекция № 7

(2 часа)

Общая характеристика ферментов

Строение ферментов

Основные этапы ферментативного катализа

Свойства ферментов

Номенклатура и классификация ферментов

Ингибиторы и активаторы ферментов

Классификация витаминов

Жирорастворимые витамины

Витамины, растворимые в воде

Витамины группы В

Общие признаки ферментов и катализаторов неорганической природы:

Катализируют только энергетически возможные реакции,

Не изменяют направление реакции,

Не расходуются в процессе реакции,

Не участвуют в образовании продуктов реакции.

Отличия ферментов от небиологических катализаторов :

Белковое строение;

Высокая чувствительность к физико-химическим факторам среды, работают в более мягких условиях (Р атмосферное, 30-40 о С, рН близкое к нейтральному);

Высокая чувствительность к химическим реагентам ;

Высокая эффективность действия (могут ускорять реакцию в 10 8 -10 12 раз; одна молекула Ф может катализировать 1000-1000000 молекул субстрата за 1 мин);

Высокая избирательность Ф к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия);

Активность Ф регулируется особыми механизмами.

По строению ферменты делятся на простые (однокомпонентные) и сложные (двукомпонентные). Простой состоит только из белковой части, сложный (холофермент ) - из белковой и небелковой частей. Белковая часть - апофермент , небелковая - кофермент (витамины В 1 , В 2 , В 5 , В 6 , Н, Q и др.). Отдельно апофермент и кофермент не обладают каталитической активностью. Участок на поверхности молекулы фермента, который взаимодействует с молекулой субстрата - активный центр.

Активный центр образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных сближенных полипептидных цепей . Образуется на уровне третичной структуры белка-фермента. В его пределах различают субстратный (адсорбционный) центр и каталитический центр. Кроме активного центра встречаются особые функциональные участки - аллостерические (регуляторные) центры.

Каталитический центр - это область активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. КЦ простых ферментов - это сочетание нескольких аминокислотных остатков, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи (серин , цистеин , тирозин , гистидин , аргинин , асп. и глут. кислоты). КЦ сложного белка устроен сложнее, т.к. участвует простетическая группа фермента - кофермент (водорастворимые витамины и жирорастворимый витамин K).


Субстратный (адсорбционный) цент р - это участок активного центра фермента, на котором происходит сорбция (связывание) молекулы субстрата. СЦ формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная функция СЦ - связывание молекулы субстрата и ее передача каталитическому центру в наиболее удобном для него положении.

Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.

Аллостерические центры найдены не у всех ферментов. Они есть у ферментов, работа которых изменяется под действием гормонов, медиаторов и других биологически активных веществ.

Глава IV .3.

Ферменты

Обменвеществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.

Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которойзависит конформация активного центра, взаимодействующего с компонентами реакции.

Вещество, химическое превращение которого катализируется ферментом носит название субстрат ( S ) .

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2)Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры . Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 ° С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 ° С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

Активность ферментовзависит также от рН среды . Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продуктазамедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

Химическая природа ферментов. Строение фермента. Активный и аллостерический центры

Все ферменты это белки с молекулярной массой от 15 000 до нескольких млн Да. По химическому строению различают простые ферменты (состоят только из АК) и сложные ферменты (имеют небелковую часть или простетическую группу). Белковая часть носит название – апофермент, а небелковая, если она связана ковалентно с апоферментом, то называется кофермент, а если связь нековалентная (ионная, водородная) – кофактор . Функции простетической группы следующие: участие в акте катализа, осуществление контакта между ферментом и субстратом, стабилизация молекулы фермента в пространстве.

В роли кофактора обычно выступают неорганические вещества- ионы цинка, меди, калия, магния, кальция, железа, молибдена.

Коферменты можно рассматривать как составную часть молекулы фермента. Это органические вещества, среди которых различают: нуклеотиды (АТФ , УМФ , и пр), витамины или их производные (ТДФ – из тиамина (В 1 ), ФМН – из рибофлавина (В 2 ), коэнзим А – из пантотеновой кислоты (В 3 ), НАД и пр) и тетрапиррольные коферменты – гемы.

В процессе катализа реакции в контакт с субстратом вступает не вся молекула фермента, а определенный ее участок, который называется активным центром . Эта зона молекулы не состоит из последовательности аминокислот, а формируется при скручивании белковой молекулы в третичную структуру. Отдельные участки аминокислот сближаются между собой, образуя определенную конфигурацию активного центра. Важная особенность строения активного центра - его поверхность комплементарна поверхности субстрата, т.е. остатки АК этой зоны фермента способны вступать в химическое взаимодействие с определенными группами субстрата. Можно представить, что активный центр фермента совпадает со структурой субстрата как ключ и замок.

В активном центре различают две зоны: центр связывания , ответственный за присоединение субстрата, и каталитический центр , отвечающий за химическое превращение субстрата. В состав каталитического центра большинства ферментов входят такие АК, как Сер, Цис, Гис, Тир, Лиз. Сложные ферменты в каталитическом центре имеют кофактор или кофермент.

Помимо активного центра ряд ферментов снабжен регуляторным (аллостерическим) центром. С этой зоной фермента взаимодействуют вещества, влияющие на его каталитическую активность.

Механизм действия ферментов

Акт катализа складывается из трех последовательных этапов.

1. Образование фермент-субстратного комплекса при взаимодействии через активный центр.

2. Связывание субстрата происходит в нескольких точках активного центра, что приводит к изменению структуры субстрата, его деформации за счет изменения энергии связей в молекуле. Это вторая стадия и называется она активацией субстрата. При этом происходит определенная химическая модификация субстрата и превращение его в новый продукт или продукты.

3. В результате такого превращения новое вещество (продукт) утрачивает способность удерживаться в активном центре фермента и фермент-субстратный, вернее уже фермент-продуктный комплекс диссоциирует (распадается).

Виды каталитических реакций:

А+Е = АЕ = БЕ = Е + Б

А+Б +Е = АЕ+Б = АБЕ = АБ + Е

АБ+Е = АБЕ = А+Б+Е,где Е - энзим, А и Б - субстраты, либо продукты реакции.

Ферментативные эффекторы - вещества, изменяющие скорость ферментативного катализа и регулирующие за счет этого метаболизм. Среди них различают ингибиторы - замедляющие скорость реакции и активаторы - ускоряющие ферментативную реакцию.

В зависимости от механизма торможения реакции различают конкурентные и неконкурентные ингибиторы. Строение молекулы конкурентного ингибитора сходно со структурой субстрата и совпадает с поверхностью активного центра как ключ с замком (или почти совпадает). Степень этого сходства может даже быть выше чем с субстратом.

Если А+Е = АЕ = БЕ = Е + Б, тоИ+Е = ИЕ ¹

Концентрация способного к катализу фермента при этом снижается и скорость образование продуктов реакции резко падает (рис. 4.3.2.).


В качестве конкурентных ингибиторов выступает большое число химических веществ эндогенного и экзогенного происхождения (т.е. образующихся в организме и поступающих извне – ксенобиотики, соответственно). Эндогенные вещества являются регуляторами метаболизма и называются антиметаболитами. Многие из них используют при лечении онкологических и микробных заболеваний, тк. они ингибируют ключевые метаболичекие реакции микроорганизмов (сульфаниламиды) и опухолевых клеток. Но при избытке субстрата и малой концентрации конкурентного ингибитора его действие отменяется.

Второй вид ингибиторов - неконкурентные. Они взаимодействую с ферментом вне активного центра и избыток субстрата не влияет на их ингибирующую способность, как в случае с конкурентными ингибиторами. Эти ингибиторы взаимодействуют или с определенными группами фермента (тяжелые металлы связываются с тиоловыми группами Цис) или чаще всего регуляторным центром, что снижает связывающую способность активного центра. Собственно процесс ингибирования - это полное или частичное подавление активности фермента при сохранении его первичной и пространственной структуры.

Различают также обратимое и необратимое ингибирование. Необратимые ингибиторы инактивируют фермент, образуя с его АК или другими компонентами структуры химическую связь. Обычно это ковалентная связь с одним из участков активного центра. Такой комплекс практически недиссоциирует в физиологических условиях. В другом случае ингибитор нарушает конформационную структуру молекулы фермента - вызывает его денатурацию.

Действие обратимых ингибиторов может быть снято при переизбытке субстрата или под действием веществ, изменяющих химическую структуру ингибитора. Конкурентные и неконкурентные ингибиторы относятся в большинстве случаев к обратимым.

Помимо ингибиторов известны еще активаторы ферментативного катализа. Они:

1) защищают молекулу фермента от инактивирующих воздействий,

2) образуют с субстратом комплекс, который более активно связывается с активным центром Ф,

3) взаимодействуя с ферментом, имеющим четвертичную структуру, разъединяют его субъединицы и тем самым открывают доступ субстрату к активному центру.

Распределение ферментов в организме

Ферменты, участвующие в синтезе белков, нуклеиновых кислот и ферменты энергетического обмена присутствуют во всех клетках организма. Но клетки, которые выполняют специальные функции содержат и специальные ферменты. Так клетки островков Лангерганса в поджелудочной железе содержат ферменты, катализирующие синтез гормонов инсулина и глюкагона. Ферменты, свойственные только клеткам определенных органов называют органоспецифическими: аргиназа и урокиназа - печень, кислая фосфатаза - простата. По изменению концентрации таких ферментов в крови судят о наличии патологий в данных органах.

В клетке отдельные ферменты распределены по всей цитоплазме, другие встроены в мембраны митохондрий и эндоплазматического ретикулума, такие ферменты образуют компартменты, в которых происходят определенные, тесно связанные между собой этапы метаболизма.

Многие ферменты образуются в клетках и секретируются в анатомические полости в неактивном состоянии - это проферменты. Часто в виде проферментов образуются протеолитические ферменты (расщепляющие белки). Затем под воздействием рН или других ферментов и субстратов происходит их химическая модификация и активный центр становится доступным для субстратов.

Существуют также изоферменты - ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию.

Номенклатура и классификация ферментов

Название фермента формируется из следующих частей:

1. название субстрата с которым он взаимодействует

2. характер катализируемой реакции

3. наименование класса ферментов (но это необязательно)

4. суффикс -аза-

пируват - декарбоксил - аза,сукцинат - дегидроген - аза

Посколькууже известно порядка 3 тыс. ферментов их необходимо классифицировать. В настоящее время принята международная классификация ферментов, в основу которой положен тип катализируемой реакции. Выделяют 6 классов, которые в свою очередь делятся на ряд подклассов (в данной книге представлены только выборочно):

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции. Делятся на 17 подклассов. Все ферменты содержат небелковую часть в виде гема или производных витаминов В 2 , В 5 . Субстрат, подвергающийся окислению выступает как донор водорода.

1.1. Дегидрогеназы отщепляют от одного субстрата водород и переносят на другие субстраты. Коферменты НАД, НАДФ, ФАД, ФМН. Они акцептируют на себе отщепленный ферментом водород превращаясь при этом в восстановленную форму (НАДН, НАДФН, ФАДН) и переносят к другому фермент-субстратному комплексу, где его и отдают.

1.2. Оксидазы - катализирует перенос водорода на кислород с образованием воды или Н 2 О 2 . Ф. Цитохромокисдаза дыхательной цепи.

RH + NAD H + O 2 = ROH + NAD + H 2 O

1.3. Монооксидазы - цитохром Р450 . По своему строению одновременно гемо- и флавопротеид. Он гидроксилирует липофильные ксенобиотики (по вышеописанному механизму).

1.4. Пероксидазы и каталазы - катализируют разложение перекисиводорода, которая образуется в ходе метаболических реакций.

1.5. Оксигеназы - катализируют реакции присоединения кислорода к субстрату.

2. Трансферазы - катализируют перенос различных радикалов от молекулы донора к молекуле акцептору.

Аа + Е + В = Еа + А + В = Е + Ва + А

2.1. Метилтрансферазы (СН 3 -).

2.2.Карбоксил- и карбамоилтрансферазы.

2.2. Ацилтрансферазы – Кофермент А (перенос ацильной группы - R -С=О).

Пример: синтез нейромедиатора ацетилхолина (см.главу "Обмен белков").

2.3. Гексозилтрансферазы- катализируют перенос гликозильных остатков.

Пример: отщепление молекулы глюкозы от гликогена под действием фосфорилазы .

2.4. Аминотрансферазы - перенос аминогрупп

R 1- CO - R 2 + R 1 - CH - NH 3 - R 2 = R 1 - CH - NH 3 - R 2 + R 1- CO - R 2

Играют важную роль в превращении АК. Общим коферментом являнтся пиридоксальфосфат.

Пример: аланинаминотрансфераза (АлАТ): пируват + глутамат = аланин + альфа-кетоглутарат (см.главу "Обмен белков").

2.5. Фосфотрансфереза (киназа) - катализируют перенос остатка фосфорной кислоты. В большинстве случает донором фосфата является АТФ. В процессе расщепления глюкозы в основном принимают участие ферменты этого класса.

Пример: Гексо (глюко)киназа .

3. Гидролазы - катализируют реакции гидролиза, т.е. расщепление веществ с присоединением по месту разрыва связи воды. К этому классу относятся преимущественно пищеварительные ферменты, они однокомпонентные (не содержат небелковой части)

R1-R2 +H 2 O = R1H + R2OH

3.1. Эстеразы - расщепляют эфирные связи. Это большой подкласс ферментов, катализирующих гидролиз тиоловых эфиров, фосфоэфиров.
Пример: NH 2 ).

Пример: аргиназа (цикл мочевины).

4.Лиазы - катализируют реакции расщепления молекул без присоединения воды. Эти ферменты имеют небелковую часть в виде тиаминпирофосфата (В 1) и пиридоксальфосфата (В 6).

4.1. Лиазы связи С-С. Их обычно называют декарбоксилазами.

Пример: пируватдекарбоксилаза .

5.Изомеразы - катализируют реакции изомеризации.

Пример: фосфопентозоизомераза, пентозофосфатизомераза (ферменты неокислительной ветви пентозофосфатного пути).

6.Лигазы катализируют реакции синтеза более сложных веществ из простых. Такие реакции идут с затратой энергии АТФ. К названию таких ферментов прибавляют "синтетаза".

ЛИТЕРАТУРА К ГЛАВЕ IV .3.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

3. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

4. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки // М.: Мир, 1974, 956 с.;

5. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.

ФЕРМЕНТЫ, органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами.

Ферменты (от лат. fermentum – брожение, закваска) иногда называют энзимами (от греч. en – внутри, zyme – закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии – энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Действие ферментов

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов – животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов.

Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать «универсальные» ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.

Особенностью ферментов является то, что они обладают высокой специфичностью, т. е. могут ускорять только одну реакцию или реакции одного типа.

В 1890 году Э. Г. Фишер предположил, что эта специфичность обусловлена особой формой молекулы фермента, которая точно соответствует форме молекулы субстрата. Эта гипотеза получила название «ключа и замка», где ключ сравнивается с субстратом, а замок – с ферментом. Гипотеза гласит: субстрат подходит к ферменту, как ключ подходит к замку. Избирательность действия фермента связана со строением его активного центра.

Активность ферментов

В первую очередь, на активность фермента влияет температура. С повышением температуры скорость химической реакции возрастает. Увеличивается скорость молекул, у них появляется больше шансов столкнуться друг с другом. Следовательно, увеличивается вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность фермента – оптимальная.

За пределами оптимальной температуры скорость реакции снижается вследствие денатурации белков. Когда температура снижается, скорость химической реакции тоже падает. В тот момент, когда температура достигает точки замерзания, фермент инактивируется, но при этом не денатурирует.

Классификация ферментов

В 1961 году была предложена систематическая классификация ферментов на 6 групп. Но названия ферментов оказались очень длинными и трудными в произношении, поэтому ферменты принято сейчас именовать с помощью рабочих названий. Рабочее название состоит из названия субстрата, на который действует фермент, и окончания «аза». Например, если вещество - лактоза, то есть молочный сахар, то лактаза – это фермент который его преобразует. Если сахароза (обыкновенный сахар), то фермент, который его расщепляет, – сахараза. Соответственно, ферменты, которые расщепляют протеины, носят название протеиназы.

Структура и механизм действия ферментов

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.
Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата.
Поскольку все ферменты являются белками (но не все белки - ферменты) остановимся подробнее на структуре белков

Белки́ - сложные высокомолекулярные природные органические вещества, построенные из

аминокислот , соединённых пептидными связями. Последовательность аминокислот в белке определена геном и зашифрована в генетическом коде. Хотя это генетическое кодирование определяет 20 "стандартных" аминокислот, расположение их в белке (протеине) дает возможность создания бесчисленного количества разных протеинов. Белки могут работать совместно, для того чтобы достигнуть определенной функции, и они часто связываются для того чтобы сформировать стабилизированный комплекс.

Модель 1,3-бета-D-глюканазы из
кристаллического стебелька
морского моллюска Spisula sachalinensis

Молекулы белков представляют собой линейные полимеры, состоящие из 20 основных L-α-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда модификации происходят уже после синтеза белка на рибосоме). Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения.

При образовании белка в результате взаимодействия α-аминогруппы (-NH 2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты образуются пептидные связи. Концы белка называют С- и N- концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -NH 2 , соответственно). При синтезе белка на рибосоме, новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.

Белки длиной от 2 до 100 аминокислотных остатков часто называют пептидами, при большей степени полимеризации - протеинами, хотя это деление весьма условно.

Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде поcледовательности нуклеотидов, причем одной аминокислоте соответсвует одна или несколько последовательностей из трех нуклеотидов - так называемых триплетов или кодонов. То, какая аминокислота соответствует данному кодону в мРНК определяется генетическим кодом, который может несколько отличаться у разных организмов.

Гомологичные белки (выполняющие одну функцию и предположительно имеющие общее эволюционного происхождение, например, гемоглобины) разных организмов имеют во многих местах цепи различные аминокислотные остатки, называемые вариабельными, в противоположность инвариантным, общим остаткам. По степени гомологии возможна оценки эволюционного расстояния между таксонами.

Простые и сложные белки

Выделяют простые белки (протеины) и сложные белки (протеиды). Простые белки содержат только аминокислоты, связанные в цепочку. Сложные белки имеют также неаминокислотные группы. Эти дополнительные группы в составе сложных белков называются «простетическими группами». Многие белки эукариот, например, имеют полисахаридные цепи, которые помогают белку принимать нужную конформацию и придают дополнительную стабильность. Дисульфидные мостики также играют роль как элементы необходимые при принятии белком правильной 3-х мерной формы, и являются главным компонентом сложных белков. Но важно заметить, что в основном только эукариоты способны на синтезирование сложных белков (протеидов), так как прокариоты не имеют достаточно компартментализации для создания дополнительных изменений, присутствующих в сложных белках, и даже если могут это делать в периплазматическом пространстве, то это случается либо редко, либо неэффективно.

Уровни структурной организации белков

Кроме последовательности (первичной структуры), крайне важна трехмерная структура белка, которая формируется в процессе фолдинга (от англ. folding, т.е. сворачивание). Показано, что несмотря на огромные размеры молекул, природные белки имеют лишь одну конформацию, утратившие структуру белки теряют свои свойства.
Выделяют четыре уровня структуры белка:
. Первичная структура — последовательность аминокислотных остатков в полипептидной цепи.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями и гидрофобными взаимодействиями. Ниже приведены некоторые распространенные типы вторичной структуры белков:
α-спирали - плотные витки вокруг длинной оси молекулы, один виток составляют 4 аминокислотных остатка, спираль стабилизорована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль может быть построена исключительно из одного типа стереоизомеров аминокислот (L или D), хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина, близкорасположенные аспарагин, серин, треонин и лейцин могут стерически мешать образованию спирали, пролин вызывает изгиб цепи и также нарушает α-спирали.
β-листы (складчатые слои) - несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между разными цепями, а не внутри одной, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в разные стороны (антипараллельная ориентация). Для образования листов важны небольшие размеры R-групп аминокислот, преобладают обычно глицин и аланин.
неупорядоченные фрагменты. ъ

Третичная структура
- пространственное строение полипептидной цепи - взаимное расположение элементов вторичной структуры, стабилизированное взаимодействием между боковыми цепями аминокислотных остатков. В стабилизации третичной структуры принимают участие:
ковалентные связи (между двумя цистеинами - дисульфидные мостики);
ионные (электростатические) взаимодействия (между противоположно заряженными аминокислотными остатками);
водородные связи;
гидрофобные взаимодействия.

Четверичная структура
- субъединичная структура белка. Взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.