Выделительная система. Вещества живых организмов. Неорганические соединения

Неорганические вещества в организме человека

Минералы играют большую роль в организме человека. Минеральные вещества активно участвуют во всех биохимических и межклеточных процессах происходящих внутри нас.

Периодическая система элементов (таблица Менделеева) насчитывает на сегодняшний день почти 120 химических элементов. Более 80-ти элементов обнаружены в организме человека. Из них человеку для нормальной жизнедеятельности необходимы около 20-ти макро- и микроэлементов.

Эссенциальные элементы. Жизненно важные (эссенциальные) микроэлементы оказывают действие на организм человека опосредованно, управляя жизнедеятельностью гормонов, ферментов, белков, жиров, углеводов, витаминов и других биологически активных веществ. Это управление происходит за счёт поддержания их определённого соотношения и концентрации в организме.

Макроэлементы:

а) Органогенные элементы

H, O, C, N - 98%

+ S, P - биоэлементы, образуют органические соединения.

б) K, Na, Ca, Mg, Fe, Cl - около 2%

P, Ca – формирование костной ткани, прочность костей.

Са. После 4х главных элементов занимает пятое место. У взрослого человека за сутки из костной ткани выводится до 700мг кальция и столько же откладывается вновь. Следовательно, костная ткань помимо опорной функции, играет роль депо кальция и фосфора, откуда организм извлекает их при недостатке поступления с пищей.

Ca - обеспечивает свертываемость крови.

K, Na, Cl – проницаемость клеточных мембран, проведение нервного импульса.

Fe – входит в состав гемоглобина.

Mg - входит в состав хлорофилла у растений, в состав ферментов у животных.

Микроэлементы – содержание около 0,02%

Zn входит в состав инсулина – гормона поджелудочной железы, усиливает активность половых желез.

Cu обеспечивает рост тканей, входит в состав ферментов.

I входит в состав тироксина – гормона щитовидной железы.

Zn входит в состав инсулина - гормона поджелудочной железы.

F входит в состав эмали зубов.

Co входит в состав витамина В 12 (кобаламин)

Mn обеспечивает обмен веществ.

B отвечает за процесс роста.

Mo отвечает за использование железа, за задержку фтора в организме.

Недостаток макро- и микроэлементов приводит к различным заболеваниям. И чтобы их предотвратить, необходимо употреблять определенные продукты питания. Недостаток или переизбыток в организме любого из этих элементов влечет серьезные изменения в его жизнедеятельности и нередко может привести к серьезным осложнениям. Поэтому для нормальной жизнедеятельности организма в нём должен поддерживаться определённый баланс минеральных веществ.

В Украине наиболее часто встречаются дефициты йода, цинка, селена, магния, марганца и меди . Кроме того, у женщин во время беременности и у детей в периоды сильного роста, нередко отмечается недостаток в организме железа .


  • При недостатке кальция развивается остеопороз (мягкость, пористость костей), замедление роста скелета. Необходимо употреблять молочные продукты.

  • При недостатке магния мускульные судороги, потеря жидкости организмом. Продукты: овощи, фасоль, орехи, молоко, фрукты.

  • При недостатке хлора - сухость кожи. Продукты: вода, поваренная соль.

  • При недостатке натрия – головная боль, слабая память, потеря аппетита. Продукты: помидоры, абрикосы, горох, поваренная соль.

  • При недостатке калия –аритмия сердечных сокращений, внезапная смерть при увеличении нагрузок. Продукты – бананы, сухофрукты, картофель, помидоры, кабачки.

  • Фосфор – внешние признаки недостаточности неизвестны. Содержится в рыбе, молочных продуктах, грецких орехах, гречке.

  • При недостатке железа развивается анемия. Необходимо употреблять печень, мясо, зеленые листья овощей.

  • При недостатке фтор а – разрушение зубов. Продукты - рыба, вода.

  • При недостатке цинка – повреждения кожи. Продукты – мясо, морские продукты.

  • При недостатке йода развивается зоб. Необходимо употреблять хурму, морепродукты, йодированную соль.

  • При недостатке меди – раковые заболевания, нарушение деятельности печени. Продукты – печень, яичный желток, цельное зерно.

  • При недостатке кобальта развивается злокачественная анемия. Продукты - печень, животные белки.


  • Кроме воды, в числе неорганических веществ, входящих в состав клетки, нужно назвать соли, представляющие собой ионные соединения. В водном растворе они диссоциируют с образованием катиона металла и аниона кислотного остатка.

  • Для процессов жизнедеятельности клетки наиболее важны

  • Катионы : K, Na, Ca, Mg .

  • Анионы: H2PO4, Cl,HCO3.

  • Концентрация ионов на внешней поверхности клетки отличается от их концентрации на внутренней поверхности. На внешней поверхности клеточной мембраны очень высокая концентрация ионов натрия, а на внутренней поверхности высока концентрация ионов калия. Вследствие этого образуется разность потенциалов между внутренней и внешней поверхностью клеточной мембраны, что обусловливает передачу возбуждения по нерву или мышце.

  • Ионы кальция и магния являются активаторами многих ферментов.

  • От концентрации солей внутри клетки зависят ее буферные свойства.

  • Буферность – это способность клетки поддерживать слабощелочную реакцию на постоянном уровне. Буферность внутри клетки обеспечивается анионами H 2 PO 4 и НРО 4 .

  • Во внеклеточной жидкости и в крови роль буфера играют Н 2 СО 3 и НСО 3 .

  • Анионы слабых кислот и слабые щелочи связывают ионы водорода и гидроксид-ионы, благодаря чему реакция внутри клетки не изменяется.

  • Соляная кислота создает кислую среду в желудке, ускоряя переваривание белков пищи.

  • Ионы кальция и фосфора содержатся в костной ткани.

  • Минеральные соли поступают в клетки организма из внешней среды. Избыток солей вместе с водой выводится из организма во внешнюю среду.

Введение

Я выбрала достаточно сложную тему, так как в ней сочетаются множество наук, изучение которых очень важно в мире: биология, экология, химия и т.д. Моя тема значима в курсе школьной химии и биологии. Человек очень сложный живой организм, но его изучение показалось мне довольно интересным. Я считаю, что каждый человек должен знать из чего он состоит.

Цель : подробнее изучить химические элементы, входящие в состав человека и взаимодействие их в организме.

Для достижения указанной цели были поставлены следующие задачи :

  • 1) Изучить элементарный состав живых организмов;
  • 2) Выделить основные группы химических элементов: микро- и макроэлементы;
  • 3) Определить, какие химические элементы отвечают за рост, работу мышц, нервной системы и т.д.;
  • 4) Провести лабораторные опыты, подтверждающие наличие углерода, азота и железа в организме человека.

Методы и приемы: анализ научной литературы, сравнительный анализ, синтез, классификация и обобщение отобранного материала; метод наблюдения, эксперимент (физический и химический).

Химические элементы в организме человека

Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Пищевые продукты и питьевая вода способствуют поступлению в организм практически всех химических элементов. Они повседневно вводятся в организм и выводятся из него. Анализы показали, что количество отдельных химических элементов и их соотношение в здоровом организме различных людей примерно одинаковы.

Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию. Достоверно установлена роль около 30 химических элементов, без которых организм человека не может нормально существовать. Эти элементы называют жизненно необходимыми. Организм человека состоит на 60% из воды, 34% приходится на органические и 6% - на неорганические вещества.

Тело человека, весящего 70 кг, состоит из:

Углерода-12,6 кг Хлора-200 граммов

Кислорода-45,5 кг Фосфора-0,7 кг

Водорода-7 кг Серы-175 граммов

Азота-2,1 кг Железа-5 граммов

Кальция-1,4 кг Фтора-100 граммов

Натрия-150 граммов Кремния-3 грамма

Калия-100 граммов Йода- 0,1 грамма

Магния-200 граммов Мышьяка-0,0005 грамма

4 кита жизни

Углерод, кислород, азот и водород - это четыре химических элемента, которые химики называют "китами химии", и которые в то же время являются основными элементами жизни. Из молекул этих четырех элементов построены не только живые белки, но вся природа вокруг нас и в нас.

В отдельности углерод - это мертвый камень. Азот, как кислород, свободный газ. Азот ничем не связан. Водород, связанный с кислородом, образует воду, а все вместе они создают Вселенную.

В своих простых соединениях - это вода на Земле, облака в атмосфере и воздух. В более сложных соединениях - это углеводы, соли, кислоты, щелочи, спирты, сахара, жиры и белковые вещества. Усложняясь еще больше, они достигают высшей стадии развития - создают жизнь.

Углерод - основа жизни.

Все органические вещества, из которых построены живые организмы, отличаются от неорганических тем, что в их основе лежит химический элемент углерод. В состав органических веществ входят и другие элементы: водород, кислород, азот, сера и фосфор. Но все они группируются вокруг углерода, который является основным центральным элементом.

Академик Ферсман назвал его основой жизни, потому что без углерода жизнь невозможна. Нет другого химического элемента с таким своеобразными свойствами, как углерод.

Однако это вовсе не означает, что углерод составляет основную массу живого вещества. В любом организме углерода имеется всего 10%, воды-80%, а остальные десять процентов приходятся на другие химические элементы, входящие в состав организма.

Характерной особенностью углерода в органических соединениях является его безграничная способность связывать в разнообразнейших сочетаниях разные элементы в атомные группы.

Организм человека и животных состоит из органических и неорганических веществ, что определяется тем в каком виде потребляются и усваиваются ими жидкости и продукты питания.

Органические и неорганические вещества имеют общие и различные свойства. Неорганические вещества растворяются в воде и впитываются растениями. В растениях неорганические вещества меняют свое состояние и переходят в органическое вещество. Это тот же самый химический элемент, но его связи меняются после того, как из жидкости он попадает в клетку растения, т.е. в структуру растительного вещества. Органические вещества, попадающие с растительной пищей в организм человека и животных, идентичны химическим элементам живой материи. Усваиваясь организмом из растительной пищи, химические элементы сохраняют природные свойства живой материи, т.е. органическое состояние.

Живой организм может усваивать вещества из воздуха, жидкостей, растительной и животной пищи. С воздухом и водой живой организм получает в основном неорганические вещества, которые могут входить в состав клеток живого организма, если своевременно не были удалены из него. Неорганические вещества отсутствуют в чистой дождевой воде, в дистиллированной воде и в свежеприготовленных соках ягод, фруктов и овощей. При хранении соков ягод, фруктов и овощей химические элементы утрачивают органическое состояние и переходят в неорганические вещества. Только растение имеет свойство длительное время, а именно до полного созревания, сохранять химические элементы в органическом состоянии.

Неорганические соединения .

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

Минеральные вещества .

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

Роль и функция отдельных элементов .

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.



Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

2. Основные жизненно необходимые соединения: белки, углеводы, жиры, витамины.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ.

Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных организмах самостоятельно синтезируются только витамины D и E. Витамины делятся на две группы: водо-растворимые (C, B1, B2, фолиевая кислота, B5, B12, B6, PP) и жирорастворимые (A, D, E, K).

http://schools.keldysh.ru/

Химический состав клетки

Минеральные соли

вода .
хороший растворитель

Гидрофильными (от греч. гидро - вода и филео

Гидрофобными (от греч. гидро - вода и фобос

упругость

Вода. Вода-универсальный растворитель гидрофильными. 2- гидрофобными. .3- теплоемкостью. 4- Вода характеризуется 5- 6- Вода обеспечивает передвижение веществ 7- У растений вода определяет тургор опорные функции, 8- Вода - составная часть смазывающих жидкостей слизей

Минеральные соли. потенциала действия ,

Физико-химические свойства воды как основной среды в организме человека.

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Липиды. Функции липидов в организме человека.

Липиды - большая группа веществ биологического происхождения, хорошо растворимых в органических растворителях, таких, как метанол, ацетон, хлороформ и бензол. В то же время эти вещества нерастворимы или мало растворимы в воде. Слабая растворимость связана с недостаточным содержанием в молекулах липидов атомов с поляризующейся электронной оболочкой, таких, как О, N, S или P.

Система гуморальной регуляции физиологических функций. Принципы гум..

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции: не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма; скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с; продолжительность действия.

Передача гуморальной регуляции осуществляется током крови, лимфы, путем диффузии, нервная - поступает нервными волокнами. Гуморальный сигнал распространяется медленнее (с током крови капилляром со скоростью 0,05 мм / с), чем нервный (скорость нервной передачи составляет 130 м / с). Гуморальный сигнал не имеет такого точного адресата (работает по принципу «всем, всем, всем»), как нервный (например, нервный импульс передается сокращающихся мышц пальца). Но эта разница не существенна, поскольку клетки имеют разную чувствительность к химическим веществам. Поэтому химические вещества действуют на строго определенные клетки, то есть на те, которые способны воспринимать эту информацию. Клетки, которые обладают такой высокой чувствительностью к любому гуморального фактора, называются клетками-мишенями.
Среди гуморальных факторов выделяют вещества с узким
спектром действия, то есть направленной действием на ограниченное количество клеток-мишеней (например, окситоцин), и шире (например, адреналин), для которых имеется значительное количество клеток-мишеней.
Гуморальная регуляция используется для обеспечения реакций, не требующих высокой скорости и точности исполнения.
Гуморальная регуляция, как и нервная, всегда выполняется
замкнутым контуром регуляции, в котором все элементы связаны между собой каналами.
Что касается элемента контура прибора, который следит (СП), то в контуре гуморальной регуляции как самостоятельная структура он отсутствует. Функцию этого звена выполняет, как правило, инкреторная
клетка.
Гуморальные вещества, которые попадают в кровь или лимфу, диффундируют в межклеточную жидкость и быстро разрушаются. В связи с этим действие их может распространяться только на близко расположенные клетки-органы, то есть их влияние имеет местный характер. В противовес местным действия дистантный влияние гуморальных веществ распространяется на клетки-мишени на расстоянии.

ГОРМОНЫ ГИПОТАЛАМУСА

гормон эффект

Кортиколиберин - Стимулирует образование кортикотропина и липотропина
Гонадолиберин - Стимулирует образование лютропина и фоллитропина
Пролактолиберин - Способствует выделению пролактина
Пролактостатин - Ингибирует выделение пролактина
Соматолиберин Стимулирует секрецию гормона роста
Соматостатин - Ингибирует секрецию гормона роста и тиреотропина
Тиролиберин - Стимулирует секрецию тиреотропина и пролактина
Меланолиберин - Стимулирует секрецию меланоцит-стимулирующего гормона
Меланостатин - Ингибирует секрецию меланоцит-стимулирующего гормона

ГОРМОНЫ АДЕНОГИПОФИЗА

СТГ (соматотропин, гормон роста) - Стимулирует рост организма, синтез белка в клетках, образование глюкозы и распад липидов
Пролактин - Регулирует лактацию у млекопитающих, инстинкт выхаживания потомства, дифференцировку различных тканей
ТТГ (тиреотропин) - Регулирует биосинтез и секрецию гормонов щитовидной железы
Кортикотропин - Регулирует секрецию гормонов коры надпочечников
ФСГ (фоллитропин) и ЛГ (лютеинизирующий гормон) - ЛГ регулирует синтез женских и мужских половых гормонов, стимулирует рост и созревание фолликулов, овуляцию, образование и функционирование желтого тела в яичниках ФСГ оказывает сенсибилизирующее действие на фолликулы и клетки Лейдига к действию ЛГ, стимулирует сперматогенез

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ Выделение гормонов щитовидной железы контролируется двумя «вышестоящими» эндокринными железами. Область головного мозга, связывающая воедино нервную и эндокринную систему, называется гипоталамус. Гипоталамус получает информацию об уровне гормонов щитовидной железы и выделяет вещества, влияющие на гипофиз.Гипофиз также расположен в головном мозге в области специального углубления - турецкого седла. Он выделяет несколько десятков сложных по строению и действию гормонов, но на щитовидную железу действует только один из них -тиреотропный гормон или ТТГ. Уровень гормонов щитовидной железы в крови и сигналы от гипоталамуса стимулируют или тормозят выделение ТТГ. Например, если количество тироксина в крови маленькое, тогда про это будут знать и гипофиз и гипоталамус. Гипофиз немедленно выделит ТТГ, что активирует выброс гормонов из щитовидной железы.

Гуморальная регуляция – это координация физиологических функций организма человека через кровь, лимфу, тканевую жидкость. Гуморальная регуляция осуществляется биологически активными веществами – гормонами, которые регулируют функции организма на субклеточном, клеточном, тканевом, органном и системном уровнях и медиаторами, которые передают нервные импульсы. Гормоны образуются железами внутренней секреции (эндокринные), а также железами внешней секреции (тканевые – стенками желудка, кишечника и другие). Гормоны влияют на обмен веществ и деятельность различных органов, поступая к ним через кровь. Гормоны имеют следующие свойства: Высокую биологическую активность; Специфичность – воздействие на определенные органы, ткани, клетки; Быстро разрушаются в тканях; Размеры молекул малы, проникновения через стенки капилляров в ткани осуществляется легко.

Надпо́чечники - парные эндокринные железыпозвоночных животных и человека . В клубочковой зоне образуются гормоны, называемые минералкортикоидами . К ним относятся:Альдостерон (основной минералокортикостероидныйгормонкоры надпочечников ) Кортикостерон (малозначимый и сравнительно малоактивный глюкокортикоидныйгормон ). Минералкортикоиды повышают реабсорбцию Na + и выделение K + в почках. В пучковой зоне образуются глюкокортикоиды , к которым относятся:Кортизол . Глюкокортикоиды оказывают важное действие почти на все процессы обмена веществ. Они стимулируют образование глюкозы из жиров и аминокислот (глюконеогенез ), угнетают воспалительные , иммунные и аллергические реакции, уменьшают разрастание соединительной ткани , а также повышают чувствительность органов чувств и возбудимостьнервной системы . В сетчатой зоне производятся половые гормоны (андрогены , являющиеся веществами - предшественниками эстрогенов ). Данные половые гормоны играют роль несколько иную, чем гормоны, выделяемые половыми железами . Клетки мозгового вещества надпочечников вырабатывают катехоламины - адреналин и норадреналин . Эти гормоны повышают артериальное давление, усиливают работу сердца, расширяют просветы бронхов, увеличивают уровень сахара в крови. В состоянии покоя они постоянно выделяют небольшие количества катехоламинов. Под влиянием стрессовой ситуации секреция адреналина и норадреналина клетками мозгового слоя надпочечников резко повышается.

Мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

Потенциал действия (ПД). Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критического значения (порога), возникает активный распространяющийся ответ - ПД. Амплитуда ПД примерно = 110-120 мв. Характерной особенностью ПД, отличающей его от других форм ответа клетки на раздражение, является то, что он подчиняется правилу "всё или ничего", т. е. возникает только при достижении раздражителем некоторого порогового значения, и дальнейшее увеличение интенсивности раздражителя уже не сказывается ни на амплитуде, ни на продолжительности ПД. Потенциал действия - один из важнейших компонентов процесса возбуждения. В нервных волокнах он обеспечивает проведение возбуждения от чувствительных окончаний (рецепторов ) к телу нервной клетки и от неё - к синаптическим окончаниям, расположенным на различных нервных, мышечных или железистых клетках. Проведение ПД вдоль нервных и мышечных волокон осуществляется т. н. локальными токами, или токами действия, возникающими между возбуждённым (деполяризованным) и соседними с ним покоящимися участками мембраны.

Постсинаптические потенциалы (ПСП) возникают в участках мембраны нервных или мышечных клеток, непосредственно граничащих с синаптическими окончаниями. Они имеют амплитуду порядка несколькихмв и длительность 10-15 мсек . ПСП подразделяются на возбуждающие (ВПСП) и тормозные (ТПСП).

Генераторные потенциалы возникают в мембране чувствительных нервных окончаний - рецепторов. Их амплитуда порядка нескольких мв и зависит от силы приложенного к рецептору раздражения. Ионный механизм генераторных потенциалов ещё недостаточно изучен.

Потенциал действия

Потенциалом действия называют быстрое изменение мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых железистых клеток. В основе его возникновения лежат изменения ионной проницаемости мембраны. В развитии потенциала действия выделяют четыре последовательных периода: локальный ответ, деполяризация, реполяризация и следовые потенциалы.

Раздражимость - способность живого организма реагировать на внешнее воздействие изменением своих физико-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, превышающих их сдвиги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех биосистем. Эти изменения окружающей среды, вызывающие реакцию организма, могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложными, высокоспециализованными реакциями у человека. В организме человека раздражимость часто связана со свойством нервной, мышечной и железистой тканей осуществлять ответную реакцию в виде выработки нервного импульса, мышечного сокращения или секреции веществ (слюны, гормонов и т. д.). У живых организмов, лишенных нервной системы, раздражимость может проявляться в движениях. Так, амебы и другие простейшие покидают неблагоприятные растворы с высокой концентрацией соли. А растения изменяют положение побегов для максимального поглощения света (тянутся к свету). Раздражимость - фундаментальное свойство живых систем: её наличие - классический критерий, по которому отличают живое от неживого. Минимальная величина раздражителя, достаточная для проявления раздражимости, называется порогом восприятия. Явления раздражимости у растений и животных имеют много общего, хотя их проявления у растений резко отличаются от привычных форм двигательной и нервной деятельности животных

Законы раздражения возбудимых тканей: 1) закон силы – возбудимость обратно-пропорциональна пороговой силе: чем больше пороговая сила, тем меньше возбудимость. Однако для возникновения возбуждения недостаточно только действия силы раздражения. Необходимо, чтобы это раздражение длилось какое-то время; 2) закон времени действия раздражителя. При действии одной и той же силы на разные ткани потребуется разная длительность раздражения, что зависит от способности данной ткани к проявлению своей специфической деятельности, то есть возбудимости: наименьшее время потребуется для ткани с высокой возбудимостью и наибольшее время - с низкой возбудимостью. Таким образом, возбудимость обратно-пропорциональна времени действия раздражителя: чем меньше время действия раздражителя, тем больше возбудимость. Возбудимость ткани определяется не только силой и длительностью раздражения, но и скоростью (быстротой) нарастания силы раздражения, что определяется третьим законом - законом скорости нарастания силы раздражения (отношения силы раздражителя ко времени его действия): чем больше скорость нарастания силы раздражения, тем меньше возбудимость. Для каждой ткани существует своя пороговая скорость нарастания силы раздражения.

Способность ткани изменять свою специфическую деятельность в ответ на раздражение (возбудимость) находится в обратной зависимости от величины пороговой силы, времени действия раздражителя и быстроты (скорости) нарастания силы раздражения.

Критический уровень деполяризации - величина мембранного потенциала, при достижении которой возникает потенциал действия. Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия.

Локальный ответ возникает на допороговые стимулы; распространяется на 1-2 мм с затуханием; возрастает с увеличением силы стимула, т.е. подчиняется закону «силы»; суммируется – возрастает при повторных частых допороговых раздражениях 10 – 40 мВ увеличивается.

Химический механизм синаптической передачи по сравнению с электрическим более эффективно обеспечивает основные функции синапса: 1) одностороннее проведение сигнала; 2) усиление сигнала; 3) конвергенцию многих сигналов на одной постсинаптической клетке, пластичность передачи сигналов.

Химические синапсы передают два вида сигналов – возбуждающий и тормозной. В возбуждающих синапсах нейромедиа-тор, освобождаемый из пресинаптических нервных окончаний, вызывает в постсинаптической мембране возбуждающий пост-синаптический потенциал – локальную деполяризацию, а в тормозных синапсах – тормозной постсинаптический потенциал, как правило, – гиперполяризацию. Снижение сопротивления мембраны, происходящее во время тормозного постсинаптического потенциала, ведет к короткому замыканию возбуждающего постсинаптического тока, тем самым ослабляя или блокируя передачу возбуждения.

Химический состав клетки

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.К микроэлеметам относятся марганец, медь, цинк, йод, фтор.К ультрамикроэлементам относятся серебро, золото, бром, селен.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

Из неорганических веществ в живой природе огромную роль играет вода .
Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые не ионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Неорганические соединения в организме человека.

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции: 1- Вода-универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. 2- Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.3- Вода обладает высокой удельной теплоемкостью. 4- Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. 5- Для воды характерно исключительно высокое поверхностное натяжение. 6- Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.7- У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).8- Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы. Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.). Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром). Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов. Существенным является не только содержание, но и соотношение ионов в клетке. Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия , что лежит в основе возникновения нервного и мышечного возбуждения.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

Ежедневно человек взаимодействует с большим количеством предметов. Они изготовлены из разных материалов, имеют свою структуру и состав. Все, что окружает человека можно разделить на органическое и неорганическое. В статье рассмотрим, что представляют собой такие вещества, приведем примеры. Также определим, какие встречаются неорганические вещества в биологии.

Описание

Неорганическими называются такие вещества, в составе которых нет углерода. Они противоположны органическим. Также к этой группе относят несколько углеродосодержащих соединений, например:

  • цианиды;
  • оксиды углерода;
  • карбонаты;
  • карбиды и другие.
  • вода;
  • разные кислоты (соляная, азотная, серная);
  • соль;
  • аммиак;
  • углекислый газ;
  • металлы и неметаллы.

Неорганическая группа отличается отсутствием углеродного скелета, который характерен для органических веществ. по составу принято делить на простые и сложные. Простые вещества составляют немногочисленную группу. Всего их насчитывается примерно 400.

Простые неорганические соединения: металлы

Металлы - простые атомов которых основывается на металлической связи. Эти элементы имеют характерные металлические свойства: теплопроводность, электропроводность, пластичность, блеск и другие. Всего в этой группе выделяют 96 элементов. К ним относятся:

  • щелочные металлы: литий, натрий, калий;
  • щелочноземельные металлы: магний, стронций, кальций;
  • медь, серебро, золото;
  • легкие металлы: алюминий, олово, свинец;
  • полуметаллы: полоний, московий, нихоний;
  • лантаноиды и лантан: скандий, иттрий;
  • актиноиды и актиний: уран, нептуний, плутоний.

В основном в природе металлы встречаются в виде руды и соединений. Чтобы получить чистый металл без примесей, проводится его очистка. При необходимости возможно проведение легирования или другой обработки. Этим занимается специальная наука - металлургия. Она подразделяется на черную и цветную.

Простые неорганические соединения: неметаллы

Неметаллы - химические элементы, которые не обладают металлическими свойствами. Примеры неорганических веществ:

  • вода;
  • азот;
  • сера;
  • кислород и другие.

Неметаллы отличаются большим числом электронов на их атома. Это обуславливает некоторые свойства: повышается способность присоединять дополнительные электроны, проявляется более высокая окислительная активность.

В природе можно встретить неметаллы в свободном состоянии: кислород, хлор, А также твердые формы: йод, фосфор, кремний, селен.

Некоторые неметаллы имеют отличительное свойство - аллотропию. То есть они могут существовать в различных модификациях и формах. Например:

  • газообразный кислород имеет модификации: кислород и озон;
  • твердый углерод может существовать в таких формах: алмаз, графит, стеклоуглерод и другие.

Сложные неорганические соединения

Эта группа веществ более многочисленна. Сложные соединения отличаются наличием в составе вещества нескольких химических элементов.

Рассмотрим подробнее сложные неорганические вещества. Примеры и классификация их представлены ниже в статье.

1. Оксиды - соединения, одним их элементов которых является кислород. В группу входят:

  • несолеобразующие (например, азота);
  • солеобразующие оксиды (например, оксид натрия, оксид цинка).

2. Кислоты - вещества, в состав которых входят ионы водорода и кислотные остатки. Например, азотная сероводород.

3. Гидроксиды - соединения, в составе которых присутствует группа -ОН. Классификация:

  • основания - растворимые и нерастворимые щелочи - гидроксид меди, гидроксид натрия;
  • кислородосодержащие кислоты - диводород триоксокарбонат, водород триоксонитрат;
  • амфотерные - гидроксид хрома, гидроксид меди.

4. Соли - вещества, в составе которых есть ионы металла и кислотные остатки. Классификация:

  • средние: хлорид натрия, сульфид железа;
  • кислые: гидрокарбонат натрия, гидросульфаты;
  • основные: нитрат дигидроксохрома, нитрат гидроксохрома;
  • комплексные: тетрагидроксоцинкат натрия, тетрахлороплатинат калия;
  • двойные: алюмокалиевые квасцы;
  • смешанные: сульфат алюминия калия, хлорид меди калия.

5. Бинарные соединения - вещества, состоящие из двух химических элементов:

  • бескислородные кислоты;
  • бескислородные соли и другие.

Неорганические соединения, содержащие углерод

Такие вещества традиционно относятся к группе неорганических. Примеры веществ:

  • Карбонаты - эфиры и соли угольной кислоты - кальцит, доломит.
  • Карбиды - соединения неметаллов и металлов с углеродом - карбид бериллия, карбид кальция.
  • Цианиды - соли цианистоводородной кислоты - цианид натрия.
  • Оксиды углерода - бинарное соединение углерода и кислорода - угарный и углекислый газы.
  • Цианаты - являются производными от циановой кислоты - фульминовая кислота, изоциановая кислота.
  • Карбонильные металлы - комплекс металла и монооксида углерода - карбонил никеля.

Все рассмотренные вещества отличаются индивидуальными химическими и физическими свойствами. В общем виде можно выделить отличительные черты каждого класса неорганических веществ:

1. Простые металлы:

  • высокая тепло- и электропроводность;
  • металлический блеск;
  • отсутствие прозрачности;
  • прочность и пластичность;
  • при комнатной температуре сохраняют твердость и форму (кроме ртути).

2. Простые неметаллы:

  • простые неметаллы могут быть в газообразном состоянии: водород, кислород, хлор;
  • в жидком состоянии встречается бром;
  • твердые неметаллы имеют немолекулярное состояние и могут образовывать кристаллы: алмаз, кремний, графит.

3. Сложные вещества:

  • оксиды: вступают в реакцию с водой, кислотами и кислотными оксидами;
  • кислоты: вступают в реакцию с водой, и щелочами;
  • амфотерные оксиды: могут вступать в реакции с кислотными оксидами и основаниями;
  • гидроксиды: растворяются в воде, имеют широкий диапазон температур плавления, могут менять цвет при взаимодействии с щелочами.

Клетка любого живого организма состоит из множества компонентов. Некоторыми из них являются неорганические соединения:

  • Вода. Например, количество воды в клетке составляет от 65 до 95%. Она необходима для осуществления химических реакций, перемещения компонентов, процесса терморегуляции. Также именно вода определяет объем клетки и степень ее упругости.
  • Минеральные соли. Могут присутствовать в организме как в растворенном виде, так и в нерастворенном. Важную роль в процессах клетки играют катионы: калий, натрий, кальций, магний - и анионы: хлор, гидрокарбонаты, суперфосфат. Минералы необходимы для поддержания осмотического равновесия, регуляции биохимических и физических процессов, образования нервных импульсов, поддержания уровня свертываемости крови и многих других реакций.

Для поддержания жизнедеятельности важны не только неорганические вещества клетки. Органические компоненты занимают 20-30 % ее объема.

Классификация:

  • простые органические вещества: глюкоза, аминокислоты, жирные кислоты;
  • сложные органические вещества: белки, нуклеиновые кислоты, липиды, полисахариды.

Органические компоненты необходимы для выполнения защитной, энергетической функции клетки, они служат источником энергии для клеточной активности и запасают питательные вещества, проводят синтез белков, передают наследственную информацию.

В статье были рассмотрены сущность и примеры неорганических веществ, их роль в составе клетки. Можно сказать, что существование живых организмов было бы невозможным без групп органических и неорганических соединений. Они важны в каждой сфере человеческой жизни, а также в существовании каждого организма.