Индивидуальная защита от ультразвука. Защита от воздействия ультразвукового шума. Воздействие ультразвука на организм человека

В принципе, для защиты от инфра- и ультразвука применимы методы для защиты от шума, изложенные выше.

Для защиты от низких инфразвуковых частот звукоизоляция крайне неэффективна - требуются очень толстые и массивные звукоизолирующие перегородки. Также неэффективны звукопоглощение и акустическая обработка помещений. Поэтому основным методом борьбы с инфразвуком является борьба в источнике его возникновения.

Другими мероприятиями по борьбе с инфразвуком являются:

  • * повышение быстроходности машин, что обеспечивает перевод максимума излучения в область слышимых частот, где становятся эффективными звукоизоляция и звукопоглощение;
  • * устранение низкочастотных вибраций;
  • * применение глушителей реактивного типа.

Ультразвук из-за очень высоких частот быстро поглощается в воздухе и материалах конструкций, поэтому он распространяется на небольшие расстояния. Для защиты от ультразвука очень эффективной является звукоизоляция и звукопоглощение. Обычно источники ультразвука заключают в кожухи из тонкой стали, алюминия (толщиной 1 мм), обклеенные внутри резиной. Применяют также эластичные кожухи из нескольких слоев резины общей толщиной 3,5 мм. Эффективность таких кожухов может достигать 60...80 дБ. Применяют также экраны, расположенные между источником и работающими.

Экранирование излучений. Экранируют либо источники излучения, либо зоны, где может находиться человек. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов. Экраны частично отражают и частично поглощают электромагнитную энергию. По степени отражения и поглощения их условно разделяют на отражающие и поглощающие экраны.

Отражающие экраны выполняют из хорошо проводящих материалов, например стали, меди, алюминия толщиной не менее 0,5 мм из конструктивных и прочностных соображений. Кроме сплошных, перфорированных, сетчатых и сотовых экранов могут применяться: фольга, наклеиваемая на несущее основание; токопроводящие краски (для повышения проводимости красок в них добавляют порошки коллоидного серебра, графита, сажи, окислов металлов, меди, алюминия), которыми окрашивают экранирующие поверхности; экраны с металлизированной со стороны падающей электромагнитной волны поверхностью.

Поглощающие экраны выполняют из радиопоглощающих материалов. Есественных материалов с хорошей радиопоглощающей способностью нет, поэтому их выполняют с помощью различных конструктивных приемов и введением различных поглощающих добавок в основу. В качестве основы используют каучук, поролон, пенополистирол, пенопласт, керамикометаллические композиции и т.д. В качестве добавок применяют сажу, активированный уголь, порошок карбонильного железа и пр. Все экраны обязательно должны заземляться для обеспечения стекания образующихся на них зарядов в землю.

Для увеличения поглощающей способности экрана их делают многослойными и большой толщины, иногда со стороны падающей волны выполняют конусообразные выступы.

Наиболее часто в технике защиты от электромагнитных полей применяют металлические сетки. Они легки, прозрачны, поэтому обеспечивают возможность наблюдения за технологическим процессом и излучателем, пропускают воздух, обеспечивая охлаждение оборудования за счет естественной или искусственной вентиляции.

Расчет эффективности экранирования довольно сложен. Поэтому на практике при выборе типов экранов и оценки их эффективности используют имеющийся богатый экспериментальный материал, представленный в справочниках в виде таблиц, расчетно-экспериментальных кривых, номограмм.

При расположении излучателей в помещениях электромагнитные волны могут отражаться от стен и перекрытий. В результате в помещении могут создаваться зоны с повышенной плотностью энергии излучения. Поэтому стены и перекрытия таких помещений необходимо выполнять с плохо отражающей поверхностью. Окрашивать стены и потолки нужно известковой и меловой краской. Нельзя использовать масляную краску (она отражает до 30 % электромагнитной энергии), облицовывать стены кафелем. Поверхности помещения, в которых находятся излучатели повышенных мощностей, облицовывают радиопоглощающим материалом.

В зависимости от технологического процесса излучающие установки целесообразно размещать в отделенных от других участков помещениях, имеющих непосредственный выход в коридор и наружу.

Для этих целей подходят угловые помещения первого и последнего этажей здания.

Источники излучения должны иметь санитарный паспорт, перед их строительством или установкой проводится расчетный радиопрогноз и осуществляется его экспериментальная проверка. При выполнении радиопрогноза необходимо учитывать возможность переизлучения от отражающих объектов на местности - железобетонных зданий и сооружений, металлических ограждений, конструкций и т.д.

Средства индивидуальной защиты. К СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащитные костюмы, комбинезоны, фартуки, очки, маски и т.д. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микропроводом, выполняющим роль сетчатого экрана. Шлем и бахилы костюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания.

Эффективность костюма может достигать 25...30 дБ. Для зашиты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность очков оценивается в 25...35 дБ.

Магнитостатическое экранирование заключается в замыкании магнитного поля в толще экрана, происходящим из-за его повышенной магнитопроводимости. Поэтому магнитостатический экран должен обладать большой магнитной проницаемостью. Такие экраны изготовляют из стали, железа, никелевых сплавов (пермолоя). Для получения надежного экранирования стенки экрана приходится делать сравнительно толстыми, чтобы уменьшить сопротивление магнитному потоку. В ряде случаев экраны делают из нескольких слоев, и они получаются громоздкими. Щели и прорези в экране не должны идти поперек ожидаемого направления линий магнитной индукции, т. к. это уменьшает магнитопроводимость и ухудшает экранирующие свойства экрана.

ЭС- и МС-экраны эффективны также в области низких частот ЭМП.

Ультразвук представляет собой механические колебания упругой среды, имеющие одинаковую со звуком физическую природу, но отличающиеся более высокой частотой, превышающей принятую верхнюю границу слышимости - свыше 20 кГц, хотя при больших интенсивностях (120-145 дБ) слышимыми могут быть и звуки более высокой частоты.

Ультразвуковой диапазон частот подразделяется на низкочастотные колебания (от 1,12 10 4 до 1,0 10 5 Гц), распространяющиеся как воздушным, так и контактным путем, и высокочастотные колебания (от 1 10 5 до 1 10 9 Гц), распространяющиеся только контактным путем.

Ультразвук, как и звук, характеризуется звуковым давлением (Па), интенсивностью (Вт/м 2) и частотой колебаний (Гц).

При распространении в различных средах ультразвуковые волны поглощаются, причем тем больше, чем выше их частота. Низкочастотный ультразвук довольно хорошо распространяется в воздухе, а высокочастотный практически не распространяется. В упругих средах (воде, металле и др.) ультразвук мало поглощается и способен распространяться на большие расстояния практически не теряя энергии.

По мере распространения ультразвуковой волны в заданном направлении происходит рассеивание и поглощение ультразвука, т.е. его затухание и переход ультразвуковой энергии в другие формы, например в тепловую, механическую и др.

Специфической особенностью ультразвука, обусловленной большой частотой и малой длиной волны, является возможность распространения ультразвуковых колебаний направленными пучками, получившими название ультразвуковых лучей. Они могут создавать на сравнительно небольшой площади значительное ультразвуковое давление. Это свойство ультразвука обусловило его широкое применение: для очистки деталей, механической обработки твердых материалов, сварки, пайки, лужения, ускорения химических реакций, дефектоскопии, проверки размеров выпускаемых изделий, структурного анализа веществ, для обработки и передачи сигналов радиолокационной и вычислительной техники и др. Ультразвук нашел применение и в медицине - для диагностики и терапии различных заболеваний, резки и соединения биологических тканей, стерилизации инструментов.

Активное воздействие ультразвука на вещество, приводящее к необратимым изменениям в нем, обусловлено в большинстве случаев нелинейными эффектами. В жидкостях основную роль при воздействии ультразвука на вещества и процессы играет кавитация, т.е. образование в жидкости пульсирующих каверн, полостей, заполненных паром или газом, которые резко захлопываются при переходе в область повышенного давления, вызывая разрушение поверхностей твердых тел, граничащих с кавитирующей жидкостью.

Воздействие ультразвука на биологические объекты различно в зависимости от его интенсивности и длительности облучения. При малых интенсивностях (до 2-3 Вт/см 2) на частотах 10 5 -10 6 Гц ультразвук производит микромассаж тканевых элементов, способствуя лучшему обмену веществ. При повышении интенсивности наблюдается ряд эффектов, которые и определяют биологическое действие ультразвука на органы и ткани организма. К таким эффектам относятся:

  • механический, вызываемый знакопеременным смещением (сгущение и разрежение) среды и кавитацией;
  • термический (тепловой), возникающий вследствие выделения тепла при поглощении тканями ультразвуковой энергии;
  • физико-химический (фотоэлектрохимический), обусловленный окисляющим и каталитическим действием ультразвукового поля с ускорением процессов диффузии через биологические мембраны и изменением скорости биологических реакций.

Давая общую характеристику воздействия ультразвука на организм, можно заключить, что малые интенсивности ультразвука обладают стимулирующим действием, средние и высокие угнетают, тормозят и могут полностью нарушить функцию и морфологию структур организма.

На практике источниками ультразвука являются технологическое оборудование приборы и аппараты, генерирующие ультразвуковые колебания от 18 кГц до 100 МГц и выше, а также оборудование, в котором при работе ультразвуковые колебания возникают как сопутствующий фактор.

Промышленные ультразвуковые установки обычно состоят из генератора электрических импульсов и преобразователя, трансформирующего их в ультразвуковые колебания. В основном они работают в частотном диапазоне от 18 до 30 кГц при интенсивности до 60-70 кВт/м 2 .

В процессе обслуживания этих установок работающие могут подвергаться воздействую ультразвука, во-первых, при его распространении в воздухе (чаще всего вместе с шумом) и, во-вторых, при непосредственном соприкосновении с жидкими и твердыми телами, по которым распространяется ультразвук (контактное воздействие). Контактное воздействие возникает при удержании инструмента во время пайки, сварки, лужения, при загрузке изделий в ванны и т.п.

При длительной работе с низкочастотными ультразвуковыми установками, генерирующими высокочастотный шум и ультразвук, превышающие установленные нормы, могут произойти функциональные изменения центральной и периферической нервной системы, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов.

Работающие жалуются на головные боли, усиливающиеся к концу работы, с преимущественной локализацией в орбитальной и височной областях, головокружение, повышенную утомляемость, раздражительность, сонливость. У работающих наблюдается повышение порогов возбудимости болевого, слухового, вестибулярного и других анализаторов, понижение артериального давления, гипертония, явления умеренного вегетативного полиневрита рук (реже ног). У работающих, которые кроме воздействия через воздух подвергаются и контактному воздействию, симптоматика нарушения здоровья выражена больше, особенно за счет явлений вегетативного полиневрита.

Длительная работа с интенсивным ультразвуком при его контактной передаче на руки может вызвать поражение периферического и сосудистого аппарата (вегетативные полиневриты, парезы пальцев). При этом степень выраженности изменений зависит от времени контакта с ультразвуком и может усиливаться под влиянием неблагоприятных сопутствующих факторов производственной среды.

Гигиенические нормативы ультразвука определены ГОСТ 12.1.001-89 «ССБТ. Ультразвук. Общие требования безопасности» и СанПиН 2.2.4/2.1.8.582-96 «Гигиенические требования при работах с источниками воздушного и контактного ультразвука промышленного, медицинского и бытового назначения».

Гигиенической характеристикой воздушного ультразвука на рабочих местах являются уровни звукового давления (дБ) в третьок- тавных полосах (fjf n = 1/2= 1,26) со среднегеометрическими частотами 12,5-100 кГц. Допустимые уровни высокочастотных звуков и ультразвуков при эксплуатации ультразвуковых установок приведены в табл. 7.3.

Нормируемым параметром ультразвука, распространяющегося контактным путем, является пиковое значение виброскорости (м/с)

Допустимые уровни звукового давления на рабочих местах

или его логарифмический уровень (дБ), определяемый по выражению

где V - пиковое значение виброскорости, м/с; V Q - опорное значение виброскорости, равное 5 10 -8 м/с.

Допустимые уровни ультразвука в зонах контакта рук и других частей тела оператора с рабочими органами ультразвуковых приборов приведены в табл. 7.3.

Допустимые уровни контактного ультразвука следует принимать на 5 дБ ниже значений, указанных в табл. 7.4 в тех случаях, когда работающие подвергаются совместному воздействию воздушного и контактного ультразвука.

Таблица 7.4

Допустимые уровни виброскорости и ее пиковые значения на рабочих местах

Контроль уровней ультразвука требуется проводить после установки ультразвукового оборудования, его ремонта и периодически в процессе эксплуатации не реже одного раза в год.

Требования к ультразвуковой характеристике оборудования определяются ГОСТ 12.2.051-80 «ССБТ. Оборудование технологическое ультразвуковое. Требования безопасности». Предприятие-изготовитель должно указывать в эксплуатационной документации производственного оборудования ультразвуковую характеристику - уровни звукового давления в третьоктавных полосах принятого диапазона частот, измеряемые в контрольных точках на высоте 1,5 м от пола, на расстоянии 5 м от контура оборудования и не менее 2 м от отражающих поверхностей.

Измерения следует производить не менее чем в четырех контрольных точках по контуру оборудования; при этом расстояние между точками измерения не должно превышать 1 м. В паспорт оборудования вносится максимальная из измеренных величин.

Для защиты от повышенных уровней ультразвука можно использовать следующие действия: уменьшение вредного излучения ультразвуковой энергии в источнике ее возникновения; локализацию действия ультразвука конструктивными и планировочными решениями; проведение организационно-профилактических мероприятий.

Для уменьшения вредного излучения звуковой энергии в источнике рекомендуется повышать рабочие частоты источников ультразвука, что обеспечивает уменьшение интенсивности ультразвука.

С целью локализации все установки, при работе которых уровни высокочастотного шума и ультразвука превышают нормативные значения, должны быть оборудованы звукоизолирующими устройствами (кожухи, экраны), имеющими облицовку из звукопоглощающих материалов (техническая резина, гетинакс, рубероид, противошумная мастика и др.). Если эти меры не дают положительного эффекта, ультразвуковые установки следует размещать в отдельных помещениях и кабинах, облицованных звукопоглощающим материалом.

Конструктивно-планировочные решения предусматривают разработку автоматического ультразвукового оборудования с отключением его при выполнении вспомогательных операций, а также установок с дистанционным управлением. Это позволяет почти полностью устранить контактное воздействие ультразвука на работающих и до безопасного минимума сократить время возможного пребывания работающих в условиях воздействия ультразвука и высокочастотного шума.

В тех случаях, когда выключение оборудования нежелательно, для исключения контактного воздействия ультразвука необходимо применять специальный инструмент с виброизолирующей рукояткой и защищать руки резиновыми перчатками с хлопчатобумажной подкладкой. Например, при загрузке изделий в ванны для очистки используют сетки, снабженные ручками с виброизолирующим покрытием (пористая резина, поролон и т.п.).

Организационно-профилактические мероприятия заключаются в проведении инструктажа работающих о характере воздействия ультразвука, мерах защиты и безопасного обслуживания ультразвуковых установок, а также в установлении рациональных режимов труда и отдыха. При систематической работе с источниками контактного ультразвука в течение более 50% рабочего времени необходимо предусматривать два регламентированных перерыва - десятиминутный перерыв за 1-1,5 ч до и пятнадцатиминутный перерыв через 1,5-2 ч после обеденного перерыва для проведения физиопрофилактических процедур.

Ультразвук – это упругие волны с частотой колебаний от 20 кГц и до 1 ГГц, которые не слышимы человеческим ухом. Источниками ультразвука являются все виды ультразвукового технологического оборудования; ультразвуковые приборы и аппаратура промышленного, медицинского и бытового назначения, которые генерируют ультразвуковые колебания в диапазоне от 18 кГц до 100 МГц и выше.

Различают следующие виды ультразвука:

  • низкочастотные (до 100 кГц) ультразвуковые колебания, которые распространяются контактным и воздушным путем;
  • высокочастотные (100 кГц-100 МГц и выше) ультразвуковые колебания, которые распространяются исключительно контактным путем.

Неблагоприятному воздействию ультразвука подвергаются дефектоскописты, операторы очистных, сварочных, ограночных агрегатов, медицинский персонал физиокабинетов и отделений, работники учреждений здравоохранения, проводящие ультразвуковые исследования и др. Установлено, что работающие с технологическими и медицинскими ультразвуковыми источниками подвергаются воздействию ультразвука с частотой колебаний 18 кГц-20 МГц и интенсивностью 50-160 дБ.

Воздействие ультразвука на организм человека

Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется интенсивно­стью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

При систематическом воздействии интенсивного низкочастотного ультразвука, если его уровень превышает предельно допустимый, у работников могут наблюдаться функциональные изменения центральной и периферической нервной системы, сер­дечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов, гуморальные нарушения. Данные о действии высокочастотного ультразвука на организм человека свидетельствуют о поли­морфных изменениях почти во всех тканях, органах и и системах. Происходящие под воздействием ультразвука (воздушного и контактного) изменения подчиняются общей закономерности: малые интенсивности стимулируют, активируют. Средние и большие – угнетают, тормозят и могут полностью подавлять функции. С 1989 года вегето-сенсорная полиневропатия рук (ангионевроз), развивающаяся у работников при воздействии контактного ультразвука, признана профессиональным заболеванием и внесена в список профзаболеваний.

Профилактика неблагоприятного воздействия ультразвука

Гигиеническое нормирование воздушного и контактного ультра­звука направлено на оптимизацию и оздоровление условий труда работ­ников, занятых выполнением трудовых функций с технологическими и медицинскими ультразвуковыми источниками. Санитарные правила и нормы СанПиН 2.2.4/2.1.8.582-96 «Гигиенические требования при работах с источниками воздушного и контактного ультразвука про­мышленного, медицинского и бытового назначения» устанавливают гигиеническую классификацию ультразвука, воздействующего на чело­века – оператора, нормируемые параметры и предельно допустимые уровни ультразвука для работающих и населения, требования к контролю воздушного и контактного ультразвука, а также меры профилактики.

При совместном воздействии контактного и воздушного ультра­звука следует применять понижающую поправку (5 дБ) к предельно допустимому уровню контактного ультразвука, облачающего более вы­сокой биологической активностью. Уровни воздушного и контактного ультразвука от источников бытового назначения (стиральные машины, устройства для отпугивания насекомых, грызунов, собак, охранная сигнализация и пр.), которые работают на частотах ниже 100 кГц, не должны превышать 75 дБ на рабочей частоте.

И целях профилактики неблагоприятного воздействия на работни­ков ультразвука следует также руководствоваться ГОСТ 12.4.077-79 «ССБТ. Ультразвук. Методы измерения звукового давления на рабочих местах», ГОСТ 12.2.051-80 «ССБТ. Оборудование технологическое ультразвуковое. Требования безопасности», ГОСТ 12.1.001-89 «ССБТ. Ультразвук. Общие требования безопасности» и другими нормативно-методическими документами.

Защита от неблагоприятного воздействия ультразвука

Защита работников от неблагоприятного воздействия ультразвука достигается путем:

  • проведения предварительных и периодических медосмотров;
  • физиопрофилактических процедур (тепловые воздушные с микромассажем и тепловые гидропроцедуры для рук, массаж верхних конечностей и др.),
  • рефлексопрофилактики;
  • гимнастических упражнений;
  • психофизической разгрузки;
  • витаминизации, сбалансированного питания;
  • организации рационального режима труда и отдыха и др.

Защита от инфразвука

Инфразвук – это акустические колебания с частотой ниже 20 Гц, которые находятся в частотном диапазоне ниже порога слышимости. Производственный инфразвук возникает в тех процессах, что и шум слышимых частот.

В настоящее время максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ. К объектам, на которых инфразвуковая область акустического спектра преобладает над звуковой, относятся автомобильный и водный транспорт, конвертерные и мартеновские цехи металлургических производств, компрессорные газоперекачивающих станций, портовые краны и др.

Особенности инфразвука

Инфразвук как физическое явление подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды:

  1. Имеет во много раз большие амплитуды колебаний, чем акустические волны при равных мощностях источников звука;
  2. Распространяется на большие расстояния от источника генерирования ввиду слабого поглощения его атмосферой.

Большая длина волны делает характерным для инфразвука явление дифракции (от лат. diffraclus - разломанный) – огибание волнами различных препятствий, если размеры препятствия около длины волны или больше. Инфразвук проникает в помещения и обходит преграды, задерживающие слышимые звуки. Инфразвуковые колебания способны вызвать вибрацию крупных объектов вследствие явлений резонанса. Указанные особенности инфразвука затрудняют борьбу с ним.

Воздействуя на организм человека, инфразвук вызывает неприятные субъективные ощущения и многочисленные реактивные измене­ния, к числу которых относятся астенизация, изменения в центральной нервной, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе.

Действующими санитарными правилами и нормами СанПиН 2.2.4/2.1.8.583-96 «Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки» установлены предельно допустимые уровни инфразвука на рабочих местах с учетом тяжести и напряженности выполняемой работы:

  • для работ различной степени тяжести в производственных помещениях и на территории организаций предельно допустимые уровни инфразвука составляют 100 дБ Лин;
  • для работ различной степени интеллектуально-эмоциональной напряженности – 95 дБ Лин;
  • для колеблющегося во времени и прерывистого инфразвука уровни звукового давления не должны превышать 120 дБ Лин.

Основные методы и средства защиты от инфразвука

Основными методами и средствами защиты от инфразвука являются:

  • изменение режима работы технологического оборудования – увеличение его быстроходности с тем, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона;
  • снижение интенсивности аэродинамических процессов: огра­ничение скоростей движения транспорта, снижение скоростей истечения жидкостей;
  • глушители интерференционного типа;
  • рациональный режим труда и отдыха;
  • использование средств индивидуальной защиты (противошумы, специальные пояса и др.).

Ультразвуковые технологические установки работают, как правило, на низких частотах (18-22 кГц). При частоте 20 кГц эти установки создают слышимый шум. Специальные исследования по воздействию ультразвуковых колебаний на человека показали, что при частоте 20 кГц и звуковом давлении до 100 дБ ультразвук не представляет опасности для организма. Худшие условия наблюдаются на частотах ниже 20 кГц, когда даже при небольшом уровне звукового давления слуховое утомление ощущается через несколько минут непрерывной работы.

Допустимый уровень

Предельно допустимым уровнем звукового давления в 1/3-октавной полосе на среднегеометрической частоте 20 кГц считают 95 дБ.

Для снижения уровня шумов ультразвуковое оборудование выпускается со звукоизолирующими кожухами; при этом должно обеспечиваться плотное прилегание крышек, дверей и других открывающихся элементов. Все отверстия, щели и пазы закрываются звукопоглощающими прокладками . Однако и в этих условиях возможно возникновение специфичного для электрозвукового оборудования шума. Поэтому необходимо применять индивидуальные средства защиты от воздействия шума.

Средства защиты

Медицинскими исследованиями доказано, что значительно снизить воздействие ультразвуковых колебаний на оператора можно, применяя плотно облегающую тело спецодежду. Так, например, при работе на ультразвуковом станке мощностью 1,6 кВт интенсивность звукового давления в области живота оператора при плотно облегающей в поясе одежде составляет снаружи одежды 110, а под одеждой 80 дБ. Поэтому размер спецодежды (халаты, куртки, комбинезоны) должен соответствовать размеру одежды оператора. Рукава спецодежды необходимо завязывать или надевать нарукавники, облегающие кисти рук. В этой связи заслуживают предпочтение халаты, имеющие завязки на спине и пояса.

Эффективным средством индивидуальной защиты от шума при работе на ультразвуковых установках служат заглушки - пробки из ультратонкой стекловаты, вставляемые в уши оператора; это ослабляет шум на 20 - 25 дБ. Навеска стекловаты массой 0,2-0,3 г свертывается в конусообразную заглушку длиной 30 мм и диаметром у основания около 15 мм. Свертывать и вставлять заглушки необходимо только чистыми руками; хранить их надо в чистой бумаге. Если кожа наружного слухового прохода повреждена, то применение таких заглушек противопоказано.

Другим эффективным средством индивидуальной защиты от шума при работе на ультразвуковых установках с повышенным уровнем звукового давления являются противошумные наушники типа ВЦНИИОТ-2. Такие наушники снижают уровень воспринимаемого шума не менее чем на 40 дБ.

Для снижения вредного влияния ультразвука на руки оператора при контакте оператора с озвучиваемыми заготовками, кассетами и другими приспособлениями применяют резиновые перчатки; еще лучше применять две пары перчаток (нательные - хлопчатобумажные и наружные - резиновые) или резиновые перчатки с хлопчатобумажной подкладкой. При работе с жидкостями нельзя допускать намокания хлопчатобумажных перчаток, так как это снижает изоляцию от вибраций. Тип резиновых перчаток подбирается с учетом условий работы, т. е. требований кислотостойкости, теплостойкости и т. д.

Общая характеристика ультразвука

В соответствии с ГОСТ 12.1.00-89 под ультразвуком понимаются упругие колебания, распространяющиеся в газообразных, жидких и твердых средах в диапазоне частот от 1,12*10 4 Гц до 10 9 Гц. Практически это не слышимые звуки, занимающие достаточно широкий диапазон частот. УЗ находит широкое применение в различных технологических процессах: обработке любых материалов, резке, сварке, очистке и др. УЗ наряду с лазером называют инструментом ХХ и соответственно ХХ1века.

ГОСТ 12.1.00-89 устанавливает классификацию, основные параметры, допустимый уровень ультразвука на рабочих местах, требования к ультразвуковым характеристикам оборудования, методам контроля и защиты от воздействия ультразвука.

Методы и средства защиты от ультразвука Коллективные методы защиты от шума .

Основной мерой защиты от ультразвука является уменьшение его интенсивности в источнике его возникновения.

Это осуществляется различными конструкционными мероприятиями (точность изготовления деталей, смазка) и переводом генератора на более высокие частоты, для которых допустимые уровни выше.

Коллективные меры защиты применяются для защиты от ультразвука по пути его распространения.

Для защиты от воздушного ультразвука, как и при шуме, применяют звукоизоляцию и звукопоглощение, но только в узком частотном диапазоне.

Звукоизоляция обеспечивается герметичными кожухами из листовой стали или алюминия, толщиной 1-2 мм или из стеклотекстолита, гетинакса толщиной более 5 мм. Внутренние стенки кожуха покрываются слоем пористой резины, при этом суммарный уровень поглощения ультразвукового излучения кожухом снижается на 25-30 дБ.

Необходимо устройство экранов, также как и при шуме, с-образной и п-образной формы между работающим оборудованием и персоналом. Чаще всего экраны изготавливают из прозрачных материалов, в частности, из оргстекла.

Существенно снижает интенсивность ультразвука размещение ультразвуковых установок в звукоизолирующих кабинах или в специальных помещениях.

При контактном действии ультразвука защита обеспечивается средствами виброизоляции, вибропоглощения (т.е. различными типами амортизаторов, покрытий, резиновыми перчатками и резиновыми ковриками).

Для исключения контакта работающих с источниками ультразвука применяется дистанционное управление оборудованием, автоблокировка (автоматическое отключение оборудования при загрузке-выгрузке деталей в случае очистки или нанесения покрытия), специальные приспособления для удержания деталей. Для защиты рук от возможного неблагоприятного воздействия контактного ультразвука применяют две пары перчаток: резиновые - наружные и хлопчатобумажные - внутренние.

Ультразвуковые станки для сварки, резки и пайки, содержащие ультразвуковые преобразователи с концентраторами, обязательно должны иметь экраны из оргстекла достаточно толстого, или другого материала, обеспечивающего снижение уровней ультразвукового давления до допустимого. Если по производственным причинам невозможно снизить интенсивность ультразвука до допустимых значений применяют средства индивидуальной защиты (СИЗ).

В качестве СИЗ от вредного воздействия ультразвука, распространяющегося в воздушной среде применяют ушные вкладыши и противошумные наушники, рассчитанные на более высокие частоты.

Медико-профилактические мероприятия при защите от ультразвука на рабочих местах.

Медико-профилактические мероприятия включают в себя предварительные и периодические медосмотры. На работу с ультразвуковыми установками принимаются лица, не моложе 18 лет и не имеющие заболеваний органов слуха (также, как и при шуме).

Периодичность медосмотров: при уровне ультразвука 80-99 дБ - 1 раз в 2 года; если уровень более 100 дБ - 1 раз в год.

Режим труда и отдыха при работе с ультразвуковым оборудованием следующий: работа 50% рабочего времени и через каждые 1,5 часа перерыв 15 мин.

Комплекс физиотерапевтических процедур, включает в себя массаж, ультрафиолетовое облучение, в особенности для рук. Зона с параметрами ультразвука, превышающими предельно-допустимые обозначается знаком "Осторожно. Прочие опасности".

Общие сведения об инфразвуке.

В соответствии с санитарными нормами СН 2.2.4/2.1.8. 567-96 «Санитарные нормы. Гигиенические нормативы инфразвука на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки» под инфразвуком понимают колебания упругих сред воздуха, твердых тел и жидкостей в диапазоне частот от 10 -2 до 20 Гц.

Инфразвуковых колебаний в природе гораздо больше, чем слышимых. Вся окружающая нас природная среда является источником инфразвука. Все живое движется, и под действием этого движения создаются инфразвуковые колебания разной частоты и интенсивности. Биение сердца, колебания легких, вибрация голосовых связок, любое наше движение рождает инфразвук.

Защита от инфразвука на производстве.

От инфразвука защиты по пути распространения практически нет.

Снижения ИЗ можно добиться только в источнике его возникновения. Для этого проводятся конструктивные изменения, позволяющие перейти из области ИЗ колебаний, в более высокочастотные, т.е. выше 20 Гц.

Кроме того, необходимо повышать жесткость конструкции больших размеров, устранять низкочастотные вибрации.

Таким образом, для защиты от инфразвука используются:

  • 1. Ослабление инфразвука в его источнике, устранение причин, порождающих низкочастотные колебания;
  • 2. Повышение жесткости конструкций больших размеров;
  • 3. Разработка конструкций, поглощающих инфразвуковые колебания, в том числе создание глушителей инфразвука;
  • 4. Создание средств индивидуальной защиты;
  • 5. Медицинские профилактические мероприятия.

Возможно некоторое снижение инфразвука при создании многослойных изолирующих кабин, состоящих из нескольких слоев алюминиевых или магниевых сплавов, между которыми располагаются пористые материалы (например, эластичный пенополиуретан). На наружные поверхности таких кабин наносится несколько слоев мастики типа антивибрит.

В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума.

Медицинские и профилактические мероприятия по защите от инфразвука аналогичны мероприятиям, проводимым при защите от шума, и требуют прежде всего соблюдения режима труда и отдыха, запрещения сверхурочных работ.