Какова особенность строения губчатого вещества. Компактное вещество кости: что оно собой представляет

Скелетом человека называется комплекс костей и их соединений. Он составляет пассивную часть опорно-двигательного аппарата, активным элементом которого, как вы уже догадались, являются мышцы. Масса скелета в среднем у мужчин равна 10 кг, у женщин – 6-8 кг.

Скелет человека подразделяется на осевой и добавочный. Осевой является более сложным, это и понятно, ведь в него входят такие составляющие, как череп, позвоночный столб и кости грудной клетки. Добавочный скелет представлен костями верхней и нижней конечностей.

Функции скелета в организме важны и разнообразны. Прежде всего он служит защитой для жизненно важных органов. Череп надежно защищает головной мозг, органы слуха, зрения, обоняния, начальные отделы пищеварительного и дыхательного аппаратов. В позвоночном канале содержится спинной мозг. Грудная клетка служит защитой для сердца, легких, вилочковой железы, пищевода и крупных сосудов. В полости таза находятся мочевой пузырь, а также матка, влагалище, трубы, яичники у женщин и предстательная железа у мужчин.

Скелет – это и опора для мягких тканей и органов. Он определяет внешнюю форму отдельных частей тела и всего организма человека в целом Движения обеспечивается подвижно соединенными между собой костями, приводимыми в движение мышцами.

И конечно, нас интересует биологическая функция скелета, а именно его участие в минеральном обмене. Хотя к биологической функции скелета еще относятся и кроветворение, и иммунитет.


А теперь поговорим о кости как органе. Может быть, для кого-то такое сочетание слов «кость – это орган» и не совсем привычно. Тем не менее это так: кость – такой же орган человеческого тела, как и все остальные. Каждая из более чем 200 костей скелета является живым, активно функционирующим и непрерывно обновляющимся органом. В кость, как и во все остальные органы, проникают сосуды и нервы, обеспечивая питание костной ткани и взаимодействие ее со всем организмом.

Каждая кость имеет свое развитие и форму, занимает присущее только ей место в теле, всегда соединяется с другими костями (кроме подъязычной кости и сесамовидных, расположенных в мягких тканях). В состав каждой кости входят представители всех 4 видов тканей: соединительная ткань, эндотелий, мышечная и нервная ткани. Все вместе они формируют такую структуру кости, которая способна очень быстро перестраиваться под влиянием внешних и внутренних факторов. Запомним этот по сути рецепт здоровья кости, так сказать, ту точку, ту особенность костной ткани (о которой вы, может быть, и не подозревали), позволяющую влиять на жизнедеятельность кости, на ее обмен веществ сознательно. Это очень славно, и мы непременно этим воспользуемся в главе о домашних тренировках. А пока продолжаем экскурс в науку остеологию!

Главными в кости, естественно, являются костные клетки. Функциональным элементом кости являются особые клетки – остеобласты. Эти клеточки способны вырабатывать специальное белковое вещество для кости – оссеин, а также откладывать минеральные соли. Находятся остеобласты во внутреннем слое надкостницы и участвуют в росте кости в ширину и восстановлении ее целостности после переломов.

Кость активно участвует в обмене веществ, постоянно находится под влиянием нервной системы, гормонов, условий питания организма, степени физической нагрузки. Я все время буду обращать ваше внимание на то, что физические нагрузки для кости необходимы Надеюсь, вы очень скоро это запомните и начнете по мере сил и возможностей подкармливать ваши косточки. Теперь вы понимаете, что кости, как и все другие органы, составляют весьма динамичную систему.

При внешнем осмотре кость имеет желтую окраску, концы покрыты хрящом бело-голубого цвета. Снаружи каждая кость, кроме суставных поверхностей, имеет надкостницу, т. е. соединительно-тканную оболочку.

Различие условий, в которых развивается кость, внутреннего строения и выполняемых функций – все это обусловливает многообразие форм костей.

Трубчатые кости, длинные и короткие, в них различают вытянутую цилиндрическую часть, называемую телом, или диафизом. На каждом конце тела (диафиза) находится эпифиз. Эпифизов соответственно два. На разрезе (распиле) в области диафиза видна полость, у взрослых заполненная желтым костным мозгом. У плодов и новорожденных костная полость отсутствует, и в диафизе имеется красный костный мозг.

Стенка образована твердым веществом кости. Эпифизарные концы более массивны, чем диафиз, и образованы губчатым веществом, в ячейках которого находится красный костный мозг. Трубчатые кости в основном составляют скелет конечностей, обеспечивая обширные движения.

Губчатые кости покрыты снаружи тонкой пластинкой твердого вещества, а внутри заполнены пластинками губчатого вещества. Костно-мозговой полости, как у трубчатых костей, они не имеют. Красный костный мозг располагается в мелких губчатых ячейках, разделенных костными балками, ориентированными по направлению действующей на данную кость силы.

Переломы при остеопорозе происходят в местах, где находится губчатая ткань, а это оконечные части трубчатых костей, позвонки, мелкие кости запястья и тазовая кость. Губчатая кость особенно подвержена остеопорозу.

Плоские кости имеют хорошо развитые компактные наружные пластинки, а между ними незначительную прослойку губчатого вещества.

Пневматизированные (воздухоносные) кости имеют пазухи, сообщающиеся с полостью носа, а ячейки сосцевидного отростка сообщаются с барабанной полостью.

Плоские кости черепа, позвоночника, грудины, лопаток, ребер, таза вмещают костный мозг, несущий кроветворную и иммунную функции. Кость участвует в обмене – когда нужно, организм высасывает из нее минеральные вещества (чаще всего при стрессе), а потом не всегда отдает. Кости черепа работают, как насосы, распределяя ликвор по черепу и спинно-мозговому каналу. Кости имеют различные свойства: в решетчатой и лобной костях есть лабиринты, при помощи которых согревается воздух. Кости, особенно лабиринты височных костей, могут быть резонаторами, помогая принять сигнал опасности.

В кости различают 3 вида клеток: остеобласты, остеоциты и остеокласты.

Остеобласты (о них мы уже упоминали) – молодые костные клетки. Они обладают высокими энергетическими возможностями, могут выделять много различных ферментов и располагаются в виде балок в точках окостенения в поверхностных слоях кости. Постепенно балки разрастаются во всех направлениях, образуя ячеистую сеть, в ячейках которой заключены кровеносные сосуды и клетки костного мозга. Остеобласты производят белки и межклеточное вещество, которое потом пропитывается солями кальция. Так сами они оказываются замурованными в костном веществе и превращаются в остеоциты.

Остеоцит – зрелая костная клетка. Остеоциты располагаются в ячейках костной сети в окружении тканевой жидкости, за счет которой осуществляются их питание и очистка. Остеокласты – крупные многоядерные клетки. Остеокласты разрушают кости и хрящи в процессе обновления костной ткани. Они имеют многочисленные выросты, и это увеличивает площадь соприкосновения остеокластов с костью.

Наружным слоем кости является компактное вещество, имеющее вид плотной, а на разрезе блестящей пластинки. Из компактного вещества построены тела трубчатых костей. Основу компактного вещества составляет промежуточное вещество, в котором расположены остеоны – структурные единицы кости. Что это такое? Остеон представляет собой от 4 до 20 трубок промежуточного вещества, вставленных одна в другую. В центре остеона имеется канал диаметром 10-110 мкм, по которому проходит кровеносный капилляр. Длинником своим остеоны ориентированы перпендикулярно к плоскости давления. Остеоны не соприкасаются друг с другом, между ними имеются вставочные пластинки, которые и объединяют остеоны в единое целое.

Каждая кость содержит огромное число остеонов. В бедренной кости их насчитывается около 3200. Если считать, что в среднем каждый остеон состоит из 12 трубок, то в диафизе бедра их будет 384 000, вставленных одна в другую. Поэтому при подобной архитектуре бедренная кость выдерживает нагрузку от 750 до 2500 кг.

Особенности строения кости при сравнительно небольшой затрате материала обеспечивают наибольшую ее прочность. Число, толщина и форма (круглая, овальная, неправильная) трубок остеона могут изменяться под влиянием работы мышц, сил давления и растяжения или других факторов, связанных с профессией, условиями питания, обмена веществ. Перестройка остеонов будет отражаться и на прочности костей. Чем обусловлен такой запас прочности костной ткани, должно быть понятно: кости иногда испытывают довольно большие нагрузки, например при прыжках с разбега или с высоты.

Губчатое вещество находится под компактным и построено из костных тонких перекладин, своими краями располагающихся перпендикулярно линиям сжатия и растяжения. Эти перекладины образуют друг с другом столбики, перекрещивающиеся под углом 90°, и под углом 45° пересекают длинную ось кости. Перекладины ориентированы одним концом по направлению сил давления, а другим опираются на компактное вещество кости. В результате этого происходит разложение сил на две составные, являющиеся сторонами параллелограмма силы, по диагонали которого происходит распространение усилия равномерно на стенки трубчатой кости из любой суставной поверхности.

Наиболее объемной частью кости является промежуточное (основное) вещество, представляющее продукт остеобластов.

Остеобластов в растущей кости очень много, особенно под надкостницей и в области эпифизарного хряща. У взрослого человека, когда рост костей закончен, эти клетки встречаются только в участках восстановления костной ткани (при переломах и трещинах костей). Таким образом, в каждой кости в различные возрастные периоды имеется определенное количественное сочетание клеточных элементов: остеобластов, остеоцитов и остеокластов, которые создают новое костное вещество, разрушают старое и обеспечивают стабильность обмена кости.

Промежуточное вещество состоит из коллагеновых волокон (органическое) и минеральных солей (неорганическое), которые пропитывают пучки коллагеновых волокон. При сочетании органических и неорганических веществ создается упругая и твердая конструкция.

На примере строения костной ткани хорошо видны взаимоотношения структуры и функции. Это особенно легко заметить, когда нарушается или изменяется функция движения. При этом происходит существенная перестройка архитектуры компактного и губчатого вещества. При уменьшении нагрузки на кость часть костных пластинок атрофируется и архитектурно перестраивается и, наоборот, увеличение нагрузки на кость оказывает формирующее влияние.

Ну что, худенькие женщины, теперь понятно, почему вам показаны занятия атлетической гимнастикой? Костям не хватает весовой нагрузки, чтобы быть крепкими. Есть такой термин в медицине – «риск развития заболевания». При остеопорозе существует длинный перечень того, что повышает вероятность этого заболевания. Мы с вами по возможности рассмотрим, как же именно тот или иной фактор может вызывать возникновение остеопороза, чтобы вы потом сами могли решать, насколько для вас все это существенно. Сознательный подход возможен, когда есть понимание сути, а нам сейчас требуется именно такой подход.

Надкостница – наружная поверхность кости (за исключением суставных поверхностей и мест прикрепления сухожилий), представляет собой тонкую (100-200 мкм) пластинку. Надкостница плотно крепится к кости благодаря наличию специальных волокон, перпендикулярно проникающих в компактное вещество кости. Надкостница состоит из двух слоев – наружного и внутреннего. В наружном слое много коллагеновых волокон, среди них располагаются нервы, сплетения мелких артерий, вен, лимфатических сосудов. Кровеносные сосуды придают надкостнице розовый оттенок. Волокнистый слой надкостницы прилежит к кости и содержит остеобласты, которые при росте кости в толщину образуют общие (генеральный) наружные пластинки промежуточного вещества.

В состав живой кости взрослого человека входит воды 50 %, жира 15,75 %, оссеина (коллагеновых волокон) 12,4 %, неорганических веществ 21,85 %. Высушенная кость состоит на 1/3 из органического и на 2/3 из неорганического вещества. Неорганические вещества – это различные соли (фосфат извести – 60 %, карбонат извести – 5,9 %, сульфат магния – 1,4 %). Кроме того, в костях имеются различные химические элементы. Минеральные соли легко растворяются в слабом растворе соляной или азотной кислоты. Этот процесс называется декальцинацией. После такой обработки в костях остается только органическое вещество, сохраняющее форму кости. Оно пористо и эластично, как губка. При удалении органических веществ путем сжигания кость также сохраняет первоначальную форму, но становится хрупкой и легко крошится. Только сочетание органических и неорганических веществ делает кость твердой и упругой. Ее прочность значительно возрастает благодаря сложной архитектуре компактного и губчатого вещества.

Кости обладают пластичностью, легко перестраиваются под действием тренировок (лучше всего умеренных и регулярных), что проявляется в изменении количества остеонов и толщины костных пластинок. Перестройка кости происходит за счет образования новых костных клеток и межклеточного вещества на фоне разрушения кости остеокластами. Недостаток нагрузки ведет к ослаблению и истончению кости. Кость становится крупноячеистой и частично рассасывается – это и есть остеопороз.


А сейчас коротко повторим технологию реконструкции костной ткани. Разрушают кость остеокласты, делают они это по запросу организма, когда ему требуется дополнительное количество кальция. Остеокласты выделяют специальное вещество (кислоту), которое и растворяет старую кость. В результате такого растворения в кровь поступают многие минеральные вещества, в их числе и кальций.

Как вы понимаете, результатом такой работы является полость. Оставлять это так нельзя, и команда для ремонта поступает другим клеткам (думаю, что вы уже догадались каким) – остеобластам. Остеобласты сначала выстилают образовавшуюся полость коллагеном – вязким клейким веществом (как клеем покрывают), а потом оттягивают кальций и другие микроэлементы из крови, образуя на поверхности «клея» кристаллы. Все это постепенно отвердевает, превращаясь в кость. А остеобласты после такой работы перестают быть остеобластами, они теряют свою активность, замуровываются в кости и с этого момента называются зрелыми клетками – остеоцитами. Весь цикл реконструкции занимает от 3 до 6 месяцев, прямо скажем, происходит небыстро.

Если остеокласты по разным причинам активнее остеобластов, то рассасывание кости идет несравнимо быстрее, чем ее восстановление. Так и теряется костное вещество. Хотелось бы узнать, что же может изменить активность клеток в сторону разрушения кости. Это по сути и есть ответ на вопрос, по какой причине запускается этот никому не нужный механизм, для возникновения остеопороза. Давайте разбираться.

В процессах реконструкции костной ткани участвует много факторов. В первую очередь это эндокринная система. Гормон паращитовидных желез – паратиреоидный гормон усиливает разрушение кости, активизируя остеокласты. Гормон кальцитонин, который образуется в щитовидной железе и является противоположным по действию паратиреоидному, усиливает процессы образования кости, стимулируя активность остеобластов. Тироксин, гормон щитовидной железы, и кортизол, основной гормон надпочечников, усиливают процессы разрушения костной ткани. Определенную роль в кальциевом обмене и, следовательно, в развитии остеопороза играет витамин D, который участвует в регуляции всасывания кальция в кишечнике.

Какая же роль при этом отводится женским половым гормонам? А роль эта благородная – защитная, и реализуется она следующим образом.

1. Женские половые гормоны способны подавлять активность паратиреоидного гормона.

2. Эстрогены способны подавлять разрушительный эффект тироксина на костную ткань, усиливая синтез тироксинсвязывающего белка, т. е. женские половые гормоны действуют на тироксин опосредованно, через специальный белок, который способен связывать тироксин и делать его тем самым неактивным.

3. Остеобласты имеют рецепторы, чувствительные к эстрогену. Это означает, что женские половые гормоны имеют возможность прямо воздействовать на остеобласты, и остеобластов при этом становится больше.

4. Эстрогены усиливают возвращение кальция в костную ткань.

Наряду с мнением официальной медицины я с удовольствием предлагаю вам версию остеопороза целительницы из Новосибирска И. А. Васильевой.

Имеется связь между костью и железами внутренней секреции. Кость разрушается при ослаблении защитников, травмах, стрессе (высокий уровень кортизола и паратиреоидного гормона).

Основными причинами разрушения кости являются :

1) травмы черепа, таза и позвоночника;

2) посттравматический сколиоз позвоночника;

3) очаги остеопороза, возникшие вблизи места травмы;

4) Рост уровня паратиреоидного гормона также приводит к снижению ионов кальция и магния в сыворотке крови;

5,) нарушение питания шейных симпатических узлов, щитовидной и паращитовидной желез (из-за шейного сколиоза);

6) ослабление функции поджелудочной железы и падение уровня инсулина;

7) воспалительные очаги в области черепа;

8) венозный застой в венах кишечника (страдают кости таза у травмы), печени (страдает поясничный отдел позвоночника);

9) длительные патологические состояния с малым объемом циркулирующей крови.

Самый главный враг кости – это травма. Травма ухудшает кровоток самой кости: в кости и в прилегающих тканях возникают воспалительные очаги, а уже это нарушает работу системы управления и кровоснабжения организма в целом. Тогда кости не только не хватает крови, ей мешают близкие застои крови, и кость не получает того, что она должна получать. Тогда кость утрачивает функцию и изменяет свою структуру.

Суть в том, что именно пограничным тканям – кости и эпителию – достается основная масса травм (поломок). И именно костям и эпителию в большей степени, чем другим тканям, свойственна бессознательная регуляция. Эта реакция соединительной ткани представляет наибольшую опасность для организма.

Как же происходит сам процесс снижения минеральной плотности кости?

Кальций вымывается из кости в пространство, окружающее кость. Органы нуждающиеся в кальции, функциональные системы или очаги (псевдоорганы), и выделяют соответствующие ферменты. Минеральная плотность ткани кости снижена в костях на месте травм рядом с воспалительными очагами. Минеральная плотность снижена потому, что воспалительные очаги способствуют «вымыванию» кальция из кости. При этом отработанный кальций выбрасывается прямо в межклеточное вещество. Концентрация кальция в лимфе растет, формируются почечные и желчные камни, на костях зарастают канальцы и капилляры. Развиваются спондилоартроз (сужение межпозвоночных отверстий) и сдавление нервных корешков с последующим развитием нервных расстройств.

Скелет – это, кроме всего прочего, еще и депо кальция. Когда в организме все в порядке, кальций используется бережно. Но, оказывается, бывает и по-другому.


| |

Рассмотрим строение кости. У каждой кости выделяют плотное (компактное) и губ­чатое вещество. Распределение компактного и губчатого вещества зависит от места в организме и функции костей.

Компактное вещество находится в тех костях и в тех их ча­стях, которые выполняют функции опоры и движения, на­пример в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое ве­щество, например в эпифизах трубчатых костей. Губчатое вещество находится также в коротких (губча­тых) и плоских костях.

Наружный слой кости представлен толстой (в диафизах труб­чатых костей) или тонкой (в эпифизах трубчатых костей, в губчатых и плоских костях) пластинкой компактного вещества . Под компактным веществом располагается губчатое (трабекулярное) вещество, пористое, построенное из костных балок с ячейками между ними, по виду напоминающие губку. Рисунок строения кости хорошо виден на срезах (шлифах) костей (рис.1). Внутри диафиза трубчатых костей находится костномозговая

полость , содержащая кост­ный мозг. Компактное вещество построено из пластинчатой костной ткани и пронизано сис­темой тонких питатель­ных канальцев , одни из которых ориентированы параллельно поверхнос­ти кости, а в трубчатых костях - вдоль длинного их размера (цент­ральный, или гаверсов, канал ), другие, прободающие (каналы Фолькмана),- перпендикулярно поверхности. Эти костные канальцы служат продолжением более крупных питательных каналов, открывающихся на поверхности кости в виде отверстий, один - два из которых бывают довольно крупными. Через питательные отверстия в кость, в систему ее костных канальцев проникают артерия, нерв и выходит вена.

Рис.1. Строение кости (схема).

1 –губчатое вещество; 2 – компактное вещество;

Стенками центральных каналов служат концентрически рас­положенные костные пластинки в виде тонких трубочек, встав­ленных одна в другую. Центральный канал с системой концент­рических пластинок, вставленных друг в друга (4-20), является структурной единицей кости и получил название остеона, или гаверсовой системы (рис.2). Диаметр остеона 3-4 мм. Пространства между остеонами выполнены вставочными (про­межуточными, интерстициальными) пластинками . Наружный слой компактного вещества кости образован наружными ок­ружающими пластинками . Внутренний слой кости, ограничиваю­щий костномозговую полость и покрытый эндостом (тонкой и нежной оболочкой, образованной соединительной тканью и содержащей остеобласты и пучки коллагеновых волокон), представ­лен внутренними окружающими пластинками . Остеоны и вста­вочные пластинки образуют компактное корковое вещество кости, напоминающее многослойный «пирог».



Компактное костное вещество, состоящее из концентриче­ски расположенных костных пластинок, хорошо развито в костях, выполняющих функцию опоры и роль рычагов (трубчатые кости). Кости, имеющие значительный объем и испытывающие нагрузку по многим направлениям, состоят преимущественно из губчатого вещества. Снаружи они имеют лишь тонкую пла­стинку компактного костного вещества [эпифизы трубчатых кос­тей, короткие (губчатые) кости].

Губчатое вещество кости построено из костных балок с ячейками между ними. Губчатое вещество, расположенное между двумя пластинка­ми компактного вещества в костях свода черепа, получило на­звание промежуточного - диплоэ. Наружная пластинка компактного вещества у костей свода черепа довольно толстая, прочная, а внутренняя - тонкая, при ударе легко ломается, образуя острые обломки, поэтому ее называют стеклянной пластинкой . Тонкие костные перекладины (балки, трабекулы) губ­чатого вещества перекрещиваются между собой и образуют множество ячеек, т.е. расположены не беспорядочно, а в определен­ных направлениях, по которым кость испытывает нагрузки в виде сжатия и растяжения (рис.3).

Линии, соответствующие ориентации костных балок и получившие название кривых сжа­тия и растяжения, могут быть общими для нескольких смежных костей. Такое расположение костных балок под углом друг к другу обеспечивает равномерную передачу напряжения, давления, тяги развиваемых мышцами, на кости. Трубчатое и арочное строение кости обусловли­вает максимальную прочность при наибольшей легкости и наи­меньшей затрате костного материала. Строение каждой кости соответствует ее месту в организме и назначению, направлению силы тяги действующих на нее мышц. Чем больше нагружена кость, чем больше деятельность окружающих ее мышц, тем кость прочнее. При уменьшении силы действующих на кость мышц кость становится тоньше, слабее.

Кроме суставных поверхностей, покрытых хрящом, снаружи кость покрыта надкостницей. Надкостница - тон­кая прочная соединительнотканная пластинка, которая богата кровеносными и лимфатическими сосудами, нервами. В ней мож­но выделить два слоя: наружный - адвентициальный, внутренний - ростковый, камбиальный (остеогенный, костеобразующий), прилежит непосредственно к костной ткани. За счет внутреннего слоя надкостницы образуются молодые кост­ные клетки (остеобласты ), откладывающиеся на поверхности кости. Внутренний слой состоит из тонковолокнистой соединительной ткани, содержащей коллагеновые и эластические волокна. В этом слое проходят мелкие кровеносные сосуды и располагаются остеобласты, при нормальных условиях они не проявляют остеогенной функции. При переломах кости они активизируются, приобретают форму типичных остеобластов и принимают участие в костеобразовании. Наружный слой надкостницы построен из плотной соединительной ткани, содержащей грубые пучки коллагеновых волокон. В этом слое проходят кровеносные сосуды, к нему прикрепляются своими сухожилиями мышцы и связки. Таким образом, вследствие костеобразующих свойств над­костницы кость растет в толщину.

С костью надкостница прочно сращена при помощи пробо­дающих волокон, уходящих в глубь кости.

Внутри кости, в костномозговой полости и ячейках губчатого вещества, находится костный мозг . Во внутриутробном периоде и у новорожденных во всех костях содержится красный кост­ный мозг , выполняющий кроветворную и защитную функции. Он представлен сетью ретикулярных во­локон и клеток. В петлях этой сети находятся молодые и зрелые клетки крови и лимфоидные элементы. В костном мозге раз­ветвляются нервные волокна и сосуды. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества плоских костей (кости черепа, грудина, крылья под­вздошных костей), в губчатых (коротких) костях, эпифизах трубчатых костей. В костномозговой полости диафизов трубча­тых костей находится желтый костный мозг , представляющий собой перерожденную ретикулярную строму с жировыми включениями. Масса костного мозга составляет 4-5 % от массы тела, причем половина - это красный костный мозг, другая - желтый.


Рис.2. Строение остеона.

1 - пластинка остеона; 2 - остеоциты (костные клетки); 3- центральный канал (канал остеона).

Рис.3. Расположение костных перекладин в губчатом веществе (схема). (Распил проксимального конца бедра во фронтальной плос­кости.)

1 -линии сжатия (давления); 2- линии растяжения.

Кость отличается очень большой пластичностью. При изме­няющихся условиях действия на кость различных сил происхо­дит перестройка кости: увеличивается или уменьшается число остеонов, изменяется их расположение. Таким образом, трени­ровки, спортивные упражнения, физическая нагрузка оказывают на кость формообразующее воздействие, укрепляют кости ске­лета.

При постоянной физической нагрузке на кость развивается ее рабочая гипертрофия: компактное вещество утолщается, костномозговая полость суживается. Сидячий образ жизни, дли­тельный постельный режим во время болезни, когда действие мышц на скелет заметно уменьшается, приводят к истончению кости, ослаблению ее. Перестраивается и компактное, и губчатое вещество, которое приобретает крупноячеистое строение. Отмече­ны особенности строения костей в соответствии с профессиональ­ной принадлежностью. Тяга сухожилий, прикрепляющихся к костям в определенных местах, ведет к образованию выступов, бугров. Прикрепление мышцы к кости без сухожилия, когда мышечные пучки непосредственно вплетаются в надкостницу, образует на кости плоскую поверхность или даже ямку.

Влияние действия мышц обусловливает характерный для каждой кости рельеф ее поверхности и соответствующее внут­реннее строение.

Перестройка костной ткани возможна благодаря одновремен­ному протеканию двух процессов: разрушению старой, ранее образовавшейся костной ткани (резорбция) и образованию но­вых костных клеток и межклеточного вещества. Кость разруша­ют особые крупные многоядерные клетки - остеокласты (костеразрушители). На месте разрушающейся кости формируются но­вые остеоны, новые костные балки. В результате одновременно протекающих процессов - резорбции и костеобразования - из­меняются внутреннее строение, форма, величина кости. Таким образом, не только биологическое начало (наследственность), но и условия внешней среды, социальные факторы влияют на конструкцию кости. Кость меняется в соответствии с изменением степени физической нагрузки, характера выполняемой работы.

Скелет – это основа опорно-двигательной системы, главное основание организма. Он состоит из костей, которые служат опорой всем мягким тканям. Что же находится в самих костях, ведь невозможно их представить пустыми?

Кость — это орган, и как любой другой, он состоит из нескольких видов ткани. Одна из главных – это компактное костное вещество, без которой формирование кости невозможно в принципе. Она соседствует с немаловажным губчатым веществом. Их противопоставления будут рассмотрены ниже.

Кости бывают нескольких видов и отличаются между собой не только размерами. Каждая из них имеет индивидуальное предназначение. В связи с принимаемой на себя кость занимает наиболее подходящее расположение в скелете. По данному принципу действуют и костные ткани.

Поэтому компактная костная ткань, точнее ее большее количество находится в костях, отвечающих за подвижность скелета, а также тех, которые выполняют функцию опоры.

Не обходятся без компактного вещества следующие кости:

  • Длинные. Отвечают за скелет конечностей. Их трубчатая средняя часть полностью заполнена компактным веществом;
  • Плоские. Их наружная часть покрыта компактным веществом;
  • Короткие. Компактная костная ткань также покрывает их снаружи, тонким слоем.

Строение компактного вещества кости

Для лучшего представления о строении компактной костной ткани сперва следует ознакомиться со структурой кости в целом.


Взяв срез кости и увеличив его с помощью микроскопа, можно увидеть множество костных пластинок, сосредоточенных вокруг специального канала, который содержит в себе нервы и сосуды. Пластинки эти представляют собой систему, под названием Остеон. Это главная структурная единица кости.

Упорядочены такие пластинки в соответствии с нагрузкой, которую принимает на себя кость. Далее остеоны организуются в более крупные костные элементы под названием трабекулы. И только затем образуется костное вещество двух типов.

Весь процесс зависит от плотности образования этих костных элементов:

  • В случае, когда трабекулы ложатся рыхлой плоскостью – образовываются специальные ячейки, напоминающие губчатую поверхность. Так формируется губчатая костная ткань;
  • Когда трабекулы ложатся плотным слоем – образуется компактное вещество кости.

Разница двух типов костного вещества в том, что губчатая ткань отвечает за легкость и эластичность, ввиду чего имеет значительно уменьшенную плотность. Компактная костная ткань же формирует весь корковый слой костей. Это обеспечено ее большой плотностью и прочностью строения. Поэтому данное вещество довольно тяжелое и составляет основной вес костей скелета.

Таким образом, компактное вещество кости состоит из первичной структурной единицы остеона, который главным образом и отвечает за ее прочность.

О строении скелета узнайте из предложенного видеоматериала.

Функции компактной костной ткани

В детстве дети часто слышат от родителей призыв к активному занятию спортом или гимнастикой. К сожалению, не все следуют советам старших и только со временем понимают, какое огромное значение имели родительские фразы.


Рассматривая причину вышеупомянутого, нужно обратить внимание на следующее: костное вещество делится на два типа, каждый из которых имеет разный состав. В то время, когда губчатое вещество формируется из органических химических элементов (оссеина), компактное вещество кости состоит из неорганических веществ. Главным образом их составом являются соли фосфорнокислая известь. Они отвечают за твердость ткани.

Маленький организм имеет большое количество оссеина, чем обусловлена гибкость растущих костей. Когда процесс роста костей подходит к фазе завершения, некоторые хрящи заменяются костьми, а сами кости приобретают необходимое количество огрубевших выступов и углублений, на которых крепятся связки и система мышц.

Чем больше мышечной массы накапливает организм в период роста, тем большее количество необходимых неровностей успевают создать кости. Затем компактная костная ткань формирует плотный корковый слой, и строение скелета практически не подлежит дальнейшим изменениям.

Как можно видеть, компактное ткань вступает в полное действие во вторую очередь, после губчатого. Этим обусловлена главная защитная функция кости.

Также компактное вещество кости запасает все химические элементы, необходимые костям. Именно оно содержит в своей структуре большое количество питательных отверстий, сквозь которые проникают кровеносные сосуды несущие питание.

Ввиду слаженной работы компактного вещества, нервов и сосудов кости, она имеет возможность расти в толщину, что необходимо.

Компактное вещество кости, составляя большую часть костной структуры, образует ее основную массу. Выполняя главную функцию защиты скелета, а значит, и поддержки всего организма в целом компактное вещество, с возрастом, требует к себе достаточного внимания, в виде дополнительных источников минеральных элементов, а именно – витаминов A, D и конечно, кальция.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Мар 18, 2016 Виолетта Лекарь